Mini-Review: Syngas Production Via Partial Oxidation of Methane Reaction and Its Potential Catalyst

Silvana Dwi Nurherdiana, Reva Edra Nugraha, Rachmad Ramadhan Yogaswara, Hamzah Fansuri

Abstract


Methane as a light gas was generally found in natural gas which was burned freely to gain a high quality of petroleum. This action truly impacted a worst condition in nature, namely greenhouse effect. This brief review described fundamental theory of the important process in methane conversion from natural gas into value-added chemical such as syngas (CO+H2). The methane conversion reaction was commonly divided into direct and indirect reaction. The indirect reaction such as partial oxidation of methane was mostly chosen due to the intermediate product (syngas) can easily generate many raw materials of petrochemicals. This paper also described a potential catalyst to be applied which in heterogeneous type such as perovskite oxide, metal oxide and zeolite.


Keywords


methane; syngas; perovskite oxide; catalyst, methane conversion

Full Text:

Full Text

References


H. M. Syukur, “Potensi gas alam di Indonesia,” Forum Teknol., vol. 06, no. 1, pp. 64–73, 2015.

A. P. E. York, T. Xiao, and M. L. H. G. Ã, “Brief overview of the partial oxidation of methane to synthesis gas,” Top. Catal., vol. 22, no. April, pp. 345–358, 2003.

S. O. Fakayode, B. S. Mitchell, and D. A. Pollard, “Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship,” Talanta, vol. 126, pp. 151–156, 2014.

A. Farsi and S. S. Mansouri, “Influence of nanocatalyst on oxidative coupling, steam and dry reforming of methane: A short review,” Arab. J. Chem., vol. 9, pp. S28–S34, 2016.

H. S. Kang et al., “Methane to acetylene conversion by employing cost-effective low-temperature arc,” Fuel Process. Technol., vol. 148, pp. 209–216, 2016.

F. Pohlmann and A. Jess, “Interplay of reaction and pore diffusion during cobalt-catalyzed Fischer-Tropsch synthesis with CO2-rich syngas,” Catal. Today, vol. 275, pp. 172–182, 2016.

M. E. Harahap and E. W. Tjahjono, “Kajian Teknologi Proses Pembuatan Gas Sintetik Dari Batubara dan Prospek Pemanfaatan Pada Industri Hilirnya,” Maj. Ilm. Pengkaj. Ind., vol. 10, no. 1, pp. 61–70, 2016.

K. Göransson, U. Söderlind, J. He, and W. Zhang, “Review of syngas production via biomass DFBGs,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 482–492, 2011, doi: 10.1016/j.rser.2010.09.032.

A. Haryanto, S. Fernando, N. Murali, and S. Adhikari, “Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol : A Review,” no. 11, pp. 2098–2106, 2005.

A. S. Nasution, A. Haris, and L. Herlina, “Gas Bumi untuk Bahan Bakar Gas dan Bahan Baku Petrokimia,” Lembaran Publ. Miny. dan Gas Bumi, vol. 45, no. 2, pp. 139–144, 2011.

W. W. Purwanto, Y. Muharam, Y. W. Pratama, D. Hartono, H. Soedirman, and R. Anindhito, “Status and outlook of natural gas industry development in Indonesia,” J. Nat. Gas Sci. Eng., 2015.

Y. Qian, S. Sun, D. Ju, X. Shan, and X. Lu, “Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines,” Renew. Sustain. Energy Rev., vol. 69, no. September 2016, pp. 50–58, 2017.

A. M. Fiore, D. J. Jacob, B. D. Field, D. G. Streets, S. D. Fernandes, and C. Jang, “Linking ozone pollution and climate change: The case for controlling methane,” Geophys. Res. Lett., vol. 29, no. 19, pp. 25-1-25–4, 2002, doi: 10.1029/2002GL015601.

BP Statistical Review of World Energy, “BP Statistical Review of World Energy,” BP Stat. Rev. World Energy, pp. 1–48, 2016.

B. C. Enger, R. L. Lødeng, and A. Holmen, “Modified cobalt catalysts in the partial oxidation of methane at moderate temperatures,” J. Catal., vol. 262, no. 2, pp. 188–198, 2009.

Y. Zeng, Y. S. Lin, and S. L. Swartz, “Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane,” J. Memb. Sci., vol. 150, no. 1, pp. 87–98, 1998.

I. Rossetti et al., “Syngas production via steam reforming of bioethanol over Ni-BEA catalysts: A BTL strategy,” Int. J. Hydrogen Energy, vol. 41, no. 38, pp. 16878–16889, 2016.

S. He et al., “Ni/SiO2 Catalyst Prepared with Nickel Nitrate Precursor for Combination of CO2 Reforming and Partial Oxidation of Methane: Characterization and Deactivation Mechanism Investigation,” J. Nanomater., vol. 2015, pp. 1–8, 2015.

E. G. Babakhani, J. Towfighi, Z. Taheri, A. N. Pour, M. Zekordi, and A. Taheri, “Partial oxidation of methane in Ba0.5Sr0.5Co0.8Fe0.1Ni0.1O3-δ ceramic membrane reactor,” J. Nat. Gas Chem., vol. 21, no. 5, pp. 519–525, 2012.

A. M. De Groote and G. F. Froment, “Simulation of the catalytic partial oxidation of methane to synthesis gas,” Appl. Catal. A Gen., vol. 138, no. 2, pp. 245–264, 1996.

B. C. Enger, R. Lødeng, and A. Holmen, “Evaluation of reactor and catalyst performance in methane partial oxidation over modified nickel catalysts,” Appl. Catal. A Gen., vol. 364, no. 1–2, pp. 15–26, 2009.

D. Dissanayake, M. P. Rosynek, K. C. C. Kharas, and J. H. Lunsford, “Partial Oxidation of Methane to Carbon Monoxide and Hydrogen over a Ni/AI203 Catalyst,” J. Catal., vol. 132, pp. 117–127, 1991.

S. Tang, J. Lin, and K. . Tan, “Partial oxidation of methane to syngas over Ni/MgO, Ni/CaO and Ni/CeO2,” Catal. Letters, vol. 51, pp. 169–175, 1998.

K. M. Lee and W. Y. Lee, “Partial oxidation of methane to syngas over calcined Ni-Mg/Al layered double hydroxides,” Catal. Letters, vol. 83, no. 1–2, pp. 65–70, 2002.

Y. Kobayashi et al., “Effect of NiO content in mesoporous NiO-Al2O3 catalysts for high pressure partial oxidation of methane to syngas,” Appl. Catal. A Gen., vol. 395, no. 1–2, pp. 129–137, 2011, doi: 10.1016/j.apcata.2011.01.034.

A. Mosayebi and R. Abedini, “Partial oxidation of butane to syngas using nano-structure Ni/zeolite catalysts,” J. Ind. Eng. Chem., vol. 20, no. 4, pp. 1542–1548, 2014.

C. Ding et al., “One step synthesis of mesoporous NiO – Al 2 O 3 catalyst for partial oxidation of methane to syngas : The role of calcination temperature,” FUEL, vol. 162, pp. 148–154, 2015.

K. Hofstad, T. Sperle, O. Rokstad, and A. Holmen, “Partial oxidation of methane to synthesis gas over a Pt/10% Rh gauze,” Catal. Letters, vol. 45, pp. 97–105, 1997, doi: 10.1023/A:1019030604516.

W. Tang, Z. Hu, M. Wang, G. D. Stucky, H. Metiu, and E. W. McFarland, “Methane complete and partial oxidation catalyzed by Pt-doped CeO2,” J. Catal., vol. 273, no. 2, pp. 125–137, 2010.

E. Ruiz-Trejo, P. Boldrin, J. L. Medley-Hallam, J. Darr, A. Atkinson, and N. P. Brandon, “Partial oxidation of methane using silver/gadolinia-doped ceria composite membranes,” Chem. Eng. Sci., vol. 127, pp. 269–275, 2015.

S. Diethelm, J. Sfeir, F. Clemens, J. Van herle, and D. Favrat, “Planar and tubular perovskite-type membrane reactors for the partial oxidation of methane to syngas,” J. Solid State Electrochem., vol. 8, no. 9, pp. 611–617, 2004.

A. Tomita, J. Nakajima, and T. Hibino, “Direct oxidation of methane to methanol at low temperature and pressure in an electrochemical fuel cell,” Angew. Chemie - Int. Ed., vol. 47, no. 8, pp. 1462–1464, 2008, doi: 10.1002/anie.200703928.

Y. Takahashi, A. Kawahara, T. Suzuki, M. Hirano, and W. Shin, “Perovskite membrane of La1-xSrxTi1-yFeyO3-d for partial oxidation of methane to syngas,” Solid State Ionics, vol. 181, no. 5–7, pp. 300–305, 2010, doi: 10.1016/j.ssi.2010.01.008.

C. T. Au and H. Y. Wang, “Pulse study of methane partial oxidation to syngas over Si02-supported nickel catalysts,” Catal. Letters, vol. 41, pp. 159–163, 1996.

C. T. Au, Y. H. Hu, and H. I. Wan, “Pulse studies of CH4 interaction with NiO/Al2O3 catalysts,” Catal. Letters, vol. 27, pp. 199–206, 1994.

Y. K. Krisnandi, B. A. P. Putra, M. Bahtiar, I. Abdullah, and R. F. Howe, “Partial Oxidation of Methane to Methanol over Heterogeneous Catalyst Co/ZSM-5,” Procedia Chem., vol. 14, pp. 508–515, 2015.

N. Y. Y. Teraoka, H.M. Zhang, S. Furukawa, “Oxygen permeation through pervoskite-type oxides,” Chem. Lett., no. C, pp. 1743–1746, 1985.

P. J. S. Prieto, A. P. Ferreira, P. S. Haddad, D. Zanchet, and J. M. C. Bueno, “Designing Pt nanoparticles supported on CeO2-Al2O3 : Synthesis, characterization and catalytic properties in the steam reforming and partial oxidation of methane,” J. Catal., vol. 276, no. 2, pp. 351–359, 2010.

V. D. Sokolovskii, N. J. Coville, A. Parmaliana, I. Eskendirov, and M. Makoa, “Methane Partial Oxidation. Challenge and Perspective,” Catal. Today, vol. 42, no. 3, pp. 191–195, 1998.

H. Pan, L. Li, X. Deng, B. Meng, X. Tan, and K. Li, “Improvement of oxygen permeation in perovskite hollow fibre membranes by the enhanced surface exchange kinetics,” J. Memb. Sci., vol. 428, pp. 198–204, 2013.

X. Tan, Z. Pang, and K. Li, “Oxygen production using La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite hollow fibre membrane modules,” J. Memb. Sci., vol. 310, no. 1–2, pp. 550–556, 2008.

D. D. Athayde et al., “Review of perovskite ceramic synthesis and membrane preparation methods,” Ceram. Int., vol. 42, no. 6, pp. 6555–6571, 2015, doi: https://doi.org/10.1016/j.ceramint.2016.01.130.

X. Tan, N. Liu, B. Meng, J. Sunarso, K. Zhang, and S. Liu, “Oxygen permeation behavior of La0.6Sr0.4Co0.8Fe0.2O3 hollow fibre membranes with highly concentrated CO2 exposure,” J. Memb. Sci., vol. 389, pp. 216–222, 2012.

H. Wang, Y. Cong, and W. Yang, “Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3- δ oxygen permeable membrane,” J. Memb. Sci., vol. 210, no. 2, pp. 259–271, 2002.

I. K. Murwani, S. Scheurell, M. Feist, and E. Kemnitz, “Nanoparticle Synthesis of La1 xSrxMnO 3,” J. Therm. Anal. Calorim., vol. 69, pp. 9–21, 2002.

S. P. Jiang, “A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O 3 electrodes,” Solid State ionics, vol. 146, pp. 1–22, 2002.




DOI: http://dx.doi.org/10.12962/j25493736.v6i2.10720

Refbacks

  • There are currently no refbacks.


Licence Creative Commons
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.