Evaluasi Parameter Fisikokimia, Farmakokinetika, dan Farmakodinamika Senyawa Fisetin Dalam Desain Obat

Arif Fadlan, Tri Warsito, Sarmoko Sarmoko

Abstract


Fisetin is a flavonoid with flavonol framework found in various fruits and vegetables such as strawberries, apples, persimmons, lotus root, grapes, onions, kiwi, peaches, and others. Fisetin with four hydroxyl and one oxo groups shows biological activities such as antioxidant, anti-inflammatory, antimicrobial, antidiabetic, and anticancer. Thus, fisetin becomes an interesting target for finding alternative therapeutic agents. However, more than 50% of drug candidates fail due to poor absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis. This research studied the physicochemical, pharmacokinetic, and pharmacodynamic parameters of fisetin to avoid those problems by using PreADMET, SwissADME, dan Molinspiration. The results revealed good physicochemical parameters for fisetin with potential to be used as oral or transdermal. Fisetin was known to be quite easy synthesized, crossed the BBB, non-toxic, not carcinogenic in mice, and had a medium cardiotoxicity. Furthermore, fisetin inhibited kinases, nuclear receptor ligands, and enzymes. It was moderate as GPCR ligands and ion channel modulators.


Keywords


fisetin, physicochemical, pharmacokinetic, pharmacodynamic

Full Text:

PDF

References


T.-Y. Wang, Q. Li, and K.-S. Bi, ”Bioactive flavonoids in medicinal plants: structure, activity and biological fate,” Asian J. Pharm. Sci. Vol. 13, pp. 12–23, 2018.

N. Khan, D. N. Syed, N. Ahmad, and H. Mukhtar, “Fisetin: A dietary antioxidant for health promotion,” Antioxid. Redox. Signal, vol. 19, pp. 151–162, 2013.

A. N. Panche, A. D. Diwan, and S. R. Chandra, “Flavonoids: an overview,” J. Nutr. Sci. Vol. 5, pp. e47, 2016.

D. Kashyap, V. K. Garg, H. S. Tuli, M. B. Yerer, K. Sak, A. K. Sharma, M. Kumar, V. Aggarwal, and S. S. Sandhu, “Fisetin and quercetin: Promising flavonoids with chemopreventive potential,” Biomolecules, 9(5), 1–22, 2019.

V. M. Adhami, D. Syed, N. Khan, and H. Mukhtar, “Dietary flavonoid fisetin: A novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management,” Biochem. Pharmacol., vol. 84, pp. 1–7, 2012.

M. Youns, and W. A. H. Hegazy, “The natural flavonoid fisetin inhibits cellular proliferation of hepatic, colorectal, and pancreatic cancer cells through modulation of multiple signaling pathways,” PLoS ONE, vol. 12, pp. 1–18, 2017.

Y. Yuea, Y. Chenc, S. Geng, G. Liang, and B. Liu, ‘’Antioxidant and α-glucosidase inhibitory activities of fisetin,” Nat. Prod. Commun., vol. 13, pp. 1489-1492, 2018.

K. A. Kang, M. J. Piao, K. C. Kim, J. W. Cha, J. Zheng, C. W. Yao, S. Chae, and J. W. Hyun, “Fisetin attenuates hydrogen peroxide-induced cell damage by scavenging reactive oxygen species and activating protective functions of cellular glutathione system,” In Vitro Cell. Dev. Biol. Anim., vol. 50, pp. 66-74, 2014.

M. Imran, F. Saeed, S. A. Gilani, M. A. Shariati, A. Imran, M. Afzaal, M. Atif, T. Tufail, and F. M. Anjum, “Fisetin: An anticancer perspective,” Food Sci. Nutr., vol. 9, pp. 3-16, 2020.

J. H. Park, Y.-J. Jang, Y. J. Choi, J. W. Jang, J.-H. Kim, Y.-K. Rho, I. J. Kim, H.-J. Kim, M. J. Leem, and S.-T. Lee, “Fisetin inhibits matrix metalloproteinases and reduces tumor cell invasiveness and endothelial cell tube formation,” Nutr. Cancer, vol. 65, pp. 1192-1199, 2013.

J. A. Kim, S. Lee, D.-E. Kim, M. Kim, B.-M. Kwon, and D. C. Han, “Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter,” Carcinogenesis, vol. 36, pp. 696-706, 2015.

P. Maher, “Preventing and treating neurological disorders with the flavonol fisetin,” Brain Plast., vol. 6, pp. 155-166, 2020.

S. K. Lee, G. S. Chang, I. H. Lee, J. E. Chung, K. Y. Sung, and K. T. No, “The PreADME: PC-based program for batch prediction of ADME properties”, in EuroQSAR 2004, Designing Drugs and Crop Protectants: Processes, Problems and Solutions, ed M. G. Ford (Malden, MA: Blackwell Pub Istanbul), pp. 9–10, 2004.

S. K. Lee, G. S. Chang, I. H. Lee, J. E. Chung, K. Y. Sung, and K. T. No, “The PreADME Approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties,” in EuroQSAR 2002 Designing Drugs and Crop Protectants: Processes, Problems and Solutions (Blackwell Publishing), pp. 418–420, 2003.

A. Daina, O. Michielin, and V. Zoete, “SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules,” Sci. Rep. Vol. 7, pp. 42717, 2017.

Molinspiration Cheminformatics free web services, https://www.molinspiration.com, Slovensky Grob, Slovakia

D. A. Filimonov, A. A. Lagunin, T.A. Gloriozova, A. V. Rudik, D. S. Druzhilovskii, P. V. Pogodin, and V. V. Poroikov, “Prediction of the biological activity spectra of organic compounds using the PASS online web resource,” Chem. Heterocycle. Compd., vol. 50, pp. 444-457, 2014.

E. March-Vila, L. Pinzi, N. Sturm, A. Tinivella, O. Engkvist, H. Chen, and G. Rastelli, “On the integration of in silico drug design methods for drug repurposing,” Front. Pharmacol., vol. 8, pp. 1–7, 2017.

C. A. Lipinski, “Drug-like Properties and the Causes of Poor Solubility and Poor Permeability”, J. Pharmacol. Toxicol. Methods, vol. 44, pp. 235–249, 2000.

M. C. Wenlock, T. Potter, P. Barton, and R. P. Austin, “A method for measuring the lipophilicity of compounds in mixture of 10,” J. Biomol. Screen., vol 16, pp. 348-355, 2011.

D. F. Veber, S. R. Johnson, H. Y. Cheng, B. R. Smith, K. W. Ward, & K. D. Kopple, “Molecular Properties That Influence the Oral Bioavailability of Drug Candidates”, J. Med. Chem., vol. 45, pp. 2615–2623, 2002

W. J. Egan, K. M. Merz, and J. J. Baldwin, “Prediction of Drug Absorption Using Multivariate Statistics,” J. Med. Chem., vol. 43, pp. 3867–3877, 2000.

A. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski, “A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases,” J. Comb. Chem,, vol. 1, pp. 55–68, 1999.

I. Muegge, S. L. Heald, and D. Brittelli, “Simple Selection Criteria for Drug-like Chemical Matter,” J. Med. Chem., vol. 44, pp. 1841–1846, 2001.

S. C. Kim, S. H. Kang, S. J. Jeong, S. H. Kim, and H. S. Ko, “Inhibition of c-Jun N-terminal kinase and nuclear factor kappa B pathways mediates fisetin-exerted anti-inflammatory activity in lipopolysccharide-treated RAW264.7 cells,” Immunopharmacol. Immunotoxicol., vol. 34, pp. 645–650, 2012.

A. Daina, O. Michielin, and V. Zoete, “SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules,” Sci. Rep., vol. 7, pp. 1–13, 2017.

P. Ertl and A. Schuffenhauer, “Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions,” J. Cheminformatics, vol. 1, pp. -, 2009.

A. Talevi and P. A. M. Quiroga, “Introduction. Biopharmaceutics and pharmacokinetics,” in ADME Processes in Pharmaceutical Sciences. Talevi, A., & Quiroga, P. A. M. (Eds). pp. 3-10, 2018.

F. Cheng, Y. Yu, Y. Zhou, Z. Shen, W. Xiao, G. Liu, W. Li, P. W. Lee, and Y. Tang, “Insights into Molecular Basis of Cytochrome P450 Inhibitory Promiscuity of Compounds,” J. Chem. Inf. Model., vol. 51, pp. 2482–2495, 2011.




DOI: http://dx.doi.org/10.12962/j25493736.v7i1.10879

Refbacks

  • There are currently no refbacks.


Licence Creative Commons
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.