STUDI MOLECULAR DOCKING SENYAWA TURUNAN AURON SEBAGAI INHIBITOR GLIKOPROTEIN SPIKE SARS-COV-2

Veliyana Londong Allo, Siti Rahmah, Rahmat Gunawan

Abstract


The spike glycoprotein plays a role in binding and inserting viruses into host cells in the human body. Auron-derived natural compounds are believed to be potential inhibitors of spike glycoprotein. In this study, redocking of the native NAG ligand was carried out, as well as molecular docking of the 6VSB spike glycoprotein viral protein. The bond energy value for redocking the native NAG ligand is -6.2 kcal/mol, and the bond energy value for molecular docking of auron derivative compounds is -7.8 to -7.3 kcal/mol. Based on the bond energy value, the compound with potential as an inhibitor of spike glycoproteins is the 3',4, 4',6-tetrahydroxy auron compound. This is supported by the bond energy value and number of hydrogen bonds for this compound of -7.8 kcal/mol, forming four hydrogen bonds.


Keywords


Spike glycoprotein¸Auron derivative compound, Molecular Docking

Full Text:

PDF PDF

References


C. Wu et al., “Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods,” Acta Pharm Sin B, vol. 10, no. 5, pp. 766–788, May 2020, doi: 10.1016/j.apsb.2020.02.008.

P. Zhou et al., “Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin,” Nature, vol. 588, no. 7836, pp. E6–E6, Dec. 2020, doi: 10.1038/s41586-020-2951-z.

A. Madeswaran, S. Brahmasundari, and P.G. Midhuna, “In silico molecular docking studies of certain commercially available flavonoids as effective antiviral agents against spike glycoprotein of SARS-CoV-2.,” Eur Rev Med Pharmacol Sci, vol. 25, no. 21, pp. 6741–6744, 2021, doi: 10.26355/eurrev_202111_27119.

C. T. Theodora, I. W. G. Gunawan, and I. M. D. Swantara, “Isolasi Dan Identifikasi Golongan Flavonoid Pada Ekstrak Etil Asetat Daun Gedi (Abelmoschus manihot L.),” Jurnal Kimia, vol. 13, no. 2, p. 131, Jul. 2019, doi: 10.24843/JCHEM.2019.v13.i02.p02.

A. A. Pratama, Y. Rifai, and A. Marzuki, “Docking Molekuler Senyawa 5,5’-Dibromometilsesamin,” Majalah Farmasi dan Farmakologi, vol. 21, no. 3, pp. 67–69, Dec. 2017, doi: 10.20956/mff.v21i3.6857.

D. Wrapp et al., “Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation,” Science (1979), vol. 367, no. 6483, pp. 1260–1263, Mar. 2020, doi: 10.1126/science.abb2507.

W. Humphrey, A. Dalke, and K. Schulten, “VMD - Visual Molecular Dynamics,” J. Molec. Graphics, vol. 14, pp. 33–38, 1996.

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison, “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J Cheminform, vol. 4, no. 1, p. 17, 2012, doi: 10.1186/1758-2946-4-17.

F. Neese, F. Wennmohs, U. Becker, and C. Riplinger, “The ORCA quantum chemistry program package,” J Chem Phys, vol. 152, no. 22, p. 224108, Jun. 2020, doi: 10.1063/5.0004608.

N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison, “Open Babel: An open chemical toolbox,” J Cheminform, vol. 3, no. 1, p. 33, Dec. 2011, doi: 10.1186/1758-2946-3-33.

G. M. Morris et al., “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,” J Comput Chem, vol. 30, no. 16, pp. 2785–2791, Dec. 2009, doi: https://doi.org/10.1002/jcc.21256.

D. S. Biovia, “Discovery Studio Visualizer.” Dassault Systèmes, San Diego, 2015. Accessed: Oct. 24, 2023. [Online]. Available: https://discover.3ds.com/discovery-studio-visualizer-download

M. B. O. Rastini, N. K. M. Giantari, K. D. Adnyani, and N. P. L. Laksmiani, “Molecular Docking Aktivitas Antikanker Dari Kuersetin Terhadap Kanker Payudara Secara In Silico,” Jurnal Kimia, p. 180, Jul. 2019, doi: 10.24843/JCHEM.2019.v13.i02.p09.

V. L. Allo, G. E. Farhanah, and R. Gunawan, “In silico analysis of flavonol compound against Mpro COVID-19,” AIP Conf Proc, vol. 2668, no. 1, p. 30005, Oct. 2022, doi: 10.1063/5.0111695.

S. Arora, G. Lohiya, K. Moharir, S. Shah, and S. Yende, “Identification of Potential Flavonoid Inhibitors of the SARS-CoV-2 Main Protease 6YNQ: A Molecular Docking Study,” Digital Chinese Medicine, vol. 3, no. 4, pp. 239–248, Dec. 2020, doi: 10.1016/j.dcmed.2020.12.003.

W. Wati, G. P. Widodo, and R. Herowati, “Prediction of Pharmacokinetics Parameter and Molecular Docking Study of Antidiabetic Compounds from Syzygium polyanthum and Syzygium cumini,” Jurnal Kimia Sains dan Aplikasi, vol. 23, no. 6, pp. 189–195, Jun. 2020, doi: 10.14710/jksa.23.6.189-195.

N. M. P. Susanti, N. P. L. Laksmiani, P. P. P. Dewi, and P. Y. C. Dewi, “Molecular Docking Terpinen-4-ol pada Protein IKK sebagai Antiinflamasi pada Aterosklerosis secara In Silico,” Jurnal Farmasi Udayana, vol. 8, no. 1, pp. 44–49, Jul. 2019, doi: 10.24843/JFU.2019.v08.i01.p07.

S. Ferwadi, R. Gunawan, and W. Astuti, “Studi Docking Molekular Senyawa Asam Sinamat Dan Derivatnya Sebagai Inhibitor Protein 1j4x Pada Sel Kanker Serviks ,” Jurnal Kimia Mulawarman, vol. 14, no. 2, pp. 84–90, 2017,s. [Online]. Available: http://jurnal.kimia.fmipa.unmul.ac.id/index.php/JKM/article/view/401

V. L. Allo and D. R. Pratiwi, “Studi Potensi Senyawa Derivatif Flavonoid Dari Tanaman Genus Macaranga Terhadap Protein e6 Hpv Dengan Metode Docking Molecular,” Jurnal Kimia Mulawarman, vol .16 no. 2, May 2019, [Online]. doi: 10.30872/jkm.v16i2.1006

W.-Y. Ching, P. Adhikari, B. Jawad, and R. Podgornik, “Ultra-large-scale ab initio quantum chemical computation of bio-molecular systems: The case of spike protein of SARS-CoV-2 virus,” Comput Struct Biotechnol J, vol. 19, pp. 1288–1301, 2021, doi: 10.1016/j.csbj.2021.02.004.




DOI: http://dx.doi.org/10.12962/j25493736.v8i2.16827

Refbacks

  • There are currently no refbacks.


Licence Creative Commons
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.