Crystal Growth Study of CoZnPO-HEX (CZP) Synthesised using Solvent-Free Method and Its Crystal Growth Simulation
Abstract
Keywords
Full Text:
PDFReferences
Ameen, S., Akhtar, M.S., Godbole, R., Shin, H.-S., 2020. Introductory Chapter: An Introduction to Nanoporous Materials, in: Sheikholeslami Kandelousi, M., Ameen, S., Shaheer Akhtar, M., Shin, H.-S. (Eds.), Nanofluid Flow in Porous Media. IntechOpen. https://doi.org/10.5772/intechopen.84773
Anderson, M.W., Gebbie-Rayet, J.T., Hill, A.R., Farida, N., Attfield, M.P., Cubillas, P., Blatov, V.A., Proserpio, D.M., Akporiaye, D., Arstad, B., Gale, J.D., 2017. Predicting crystal growth via a unified kinetic three-dimensional partition model. Nature 544, 456–459. https://doi.org/10.1038/nature21684
Bieniok, A., Brendel, U., Paulus, E.F., Amthauer, G., 2006. Microporous cobalto- and zincophosphates with the framework-type of cancrinite. ejm 17, 813–818. https://doi.org/10.1127/0935-1221/2005/0017-0813
Cheetham, A.K., Férey, G., Loiseau, T., 1999. Open-Framework Inorganic Materials. Angew. Chem. Int. Ed. 38, 3268–3292. https://doi.org/10.1002/(SICI)1521 3773(19991115)38:223.0.CO;2-U
Cubillas, P., Anderson, M.W., 2010. Synthesis Mechanism: Crystal Growth and Nucleation, in: Čejka, J., Corma, A., Zones, S. (Eds.), Zeolites and Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 1–55. https://doi.org/10.1002/9783527630295.ch1
Farida, N., Prasetyoko, D., 2014. Aktivitas Katalitik TS-1 Dengan Lokasi Sisi Hidrofilik Berbeda: Di Dalam Struktur Kerangka Dan Di Permukaan Struktur Kerangka Katalis 41.
Hahn, TH., Klapper, H., 2013. Twinning of Crystals. International Tables for Crystallography D, 413.
Hill, A.R., Cubillas, P., Gebbie-Rayet, J.T., Trueman, M., de Bruyn, N., Harthi, Z. al, Pooley, R.J.S., Attfield, M.P., Blatov, V.A., Proserpio, D.M., Gale, J.D., Akporiaye, D., Arstad, B., Anderson, M.W., 2021. CrystalGrower : a generic computer program for Monte Carlo modelling of crystal growth. Chem. Sci. 12, 1126–1146. https://doi.org/10.1039/D0SC05017B
Hobday, C.L., Krause, S., Rogge, S.M.J., Evans, J.D., Bunzen, H., 2021. Perspectives on the Influence of Crystal Size and Morphology on the Properties of Porous Framework Materials. Front. Chem. 9, 772059. https://doi.org/10.3389/fchem.2021.772059
Liao, S., Liu, G., Tian, X., Chen, X., Wu, W., Liang, Y., 2010. Selective Synthesis of a Hexagonal Co(II)-Substituted Sodium Zincophosphate via a Simple and Novel Route. Chin. J. Chem. 28, 50–54. https://doi.org/10.1002/cjoc.201090034
Luo, Y., Smeets, S., Wang, Z., Sun, J., Yang, W., 2019. Synthesis and Structure Determination of SCM-15: A 3D Large Pore Zeolite with Interconnected Straight 12×12×10-Ring Channels. Chem. Eur. J. 25, 2184–2188. https://doi.org/10.1002/chem.201805187
Mullin, J.W., 2001. Crystallization, 4th ed. ed. Butterworth-Heinemann, Oxford ; Boston.
Ng, E.-P., Ghoy, J.-P., Awala, H., Vicente, A., Adnan, R., Ling, T.C., Mintova, S., 2016. Ionothermal synthesis of FeAPO-5 in the presence of phosphorous acid. CrystEngComm 18, 257–265. https://doi.org/10.1039/C5CE01973G
Rajić, N., Logar, N.Z., Kaučič, V., 1995. A novel open framework zincophosphate: Synthesis and characterization. Zeolites 15, 672–678. https://doi.org/10.1016/0144-2449(95)00083-I
Sriatun, S., Taslimah, T., Cahyo, E.N., Saputro, F.D., 2017. Sintesis dan Karakterisasi Zeolit Y. J. Kim. Sains Apl. 20, 19–24. https://doi.org/10.14710/jksa.20.1.19-24
Wang, P., Shen, B., Shen, D., Peng, T., Gao, J., 2007. Synthesis of ZSM-5 zeolite from expanded perlite/kaolin and its catalytic performance for FCC naphtha aromatization. Catalysis Communications 8, 1452–1456. https://doi.org/10.1016/j.catcom.2006.12.018
Wiebcke, M., 2005. Hydrothermal reversible interconversion of two zincophosphates with three-dimensional open frameworks containing diprotonated 1,4 diazacycloheptane molecules. Journal of Solid State Chemistry 8.
DOI: http://dx.doi.org/10.12962/j25493736.v9i1.20989
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.