Green Synthesis of Fe3O4 Nanoparticles Using Pineapple Peel Extract For Adsorption of Rhodamine B
Abstract
Abstract
This research aims to develop an environmentally friendly method for the synthesis of Fe₃O₄ nanoparticles using Tangkit pineapple peel extract with iron sand from the Batanghari River, Jambi, as raw materials. FTIR analysis detected Fe-O metal oxide clusters at a wavenumber of 533 cm⁻¹, confirming the presence of Fe₃O₄. The XRD diffraction pattern according to ICSD reference data number 01-076-0956 shows the highest intensity peak at an angle of 2θ 30.17°; 35.47°; 57.18°; and 62.77° with an average crystal diameter of 19.99 nm. SEM showed irregular particle morphology, while particle size analysis revealed an average particle size of 198 nm. Magnetic properties test using VSM shows that the nanoparticles are superparamagnetic with a saturation magnetization (Ms) of 26.25 emu/g. In the Rhodamine B adsorption test, the highest efficiency was achieved at a mass of 100 mg with a value of 95.21%. The optimum adsorption time occurred at 75 minutes with an efficiency of 98.52%. These results indicate that Fe₃O₄ nanoparticles synthesized via the green synthesis method using Tangkit pineapple peel extract have high potential for application in processing textile dye waste.
Keywords: green synthesis, Fe3O4 nanoparticles, bioreductor, environmentally friendly. adsorbent.
Abstrak
Penelitian ini bertujuan mengembangkan metode ramah lingkungan untuk sintesis nanopartikel Fe₃O₄ menggunakan ekstrak kulit nanas Tangkit dengan pasir besi Sungai Batanghari, Jambi, sebagai bahan baku. Analisis FTIR mendeteksi gugus logam oksida Fe-O pada bilangan gelombang 533 cm⁻¹, mengonfirmasi keberadaan Fe₃O₄. Pola difraksi XRD sesuai data referensi ICSD nomor 01-076-0956 menunjukkan puncak intensitas tertinggi pada sudut 2θ 30,17°; 35,47°; 57,18°; dan 62,77° dengan diameter kristal rata-rata kristal sebesar 19,99 nm. SEM menunjukkan morfologi partikel tidak beraturan, sedangkan analisis ukuran partikel mengungkapkan rata-rata ukuran partikel 141,83 nm. Uji sifat magnetik menggunakan VSM menunjukkan nanopartikel bersifat superparamagnetik dengan magnetisasi saturasi (Ms) sebesar 26,25 emu/g. Pada uji adsorpsi Rhodamin B, efisiensi tertinggi tercapai pada massa 100 mg dengan nilai 95,21%. Waktu adsorpsi optimum terjadi pada 75 menit dengan efisiensi sebesar 98,52%. Hasil ini menunjukkan bahwa nanopartikel Fe₃O₄ yang disintesis melalui metode green synthesis menggunakan ekstrak kulit nanas Tangkit berpotensi tinggi untuk aplikasi dalam pengolahan limbah pewarna tekstil.
Kata kunci: green synthesis, nanopartikel Fe3O4, bioreduktor, ramah lingkungan, adsorben.
Keywords
Full Text:
PDFReferences
S. H. Putri, “Daerah Aliran Sungai (DAS) Batanghari: Rupa Bumi Nan Kaya Sejarah,” vol. 4, no. 1, pp. 21–31, 2024.
O. Elsafitri and F. Deswardani, “Sintesis Dan Karakterisasi Nanopartikel Fe3O4 (Magnetite) Dari Pasir Besi Sungai Batanghari Jambi Yang Dienkapsulasi Dengan Polyethylene Glycol (Peg-4000),” J. Pendidik. Fis. Tadulako, vol. 8, no. 3, pp. 97–103, 2020.
Heriansyah, Mustawarman, and E. Suharyadi, “(Fe3O4) YANG DIENKAPSULASI POLIMER POLYETHYLENE GLYCOL ( PEG-4000 ),” Spektra J. Fis. dan Apl., vol. 16, no. 3, pp. 50–55, 2015.
G. D. Tatinting and H. F. Aritonang, “DARI PASIR BESI PANTAI HAIS SEBAGAI ADSORBEN LOGAM KADMIUM ( Cd ),” vol. 14, no. 2, 2021.
D. Indiastuti and F. F. Amaliyah, “SintesisIndiastuti, Dian, and Fina Firatun Amaliyah. 2021. ‘Sintesis Dan Karakterisasi Nanopartikel Fe3O4 Termodifikasi Biokompatibel Polimer Serta Potensinya Sebagai Penghantar Obat.’ The Indonesian Green Technology Journal: 1–8. dan Karakterisasi Nanopa,” Indones. Green Technol. J., pp. 1–8, 2021, doi: 10.21776/ub.igtj.2021.010.01.01.
D. Novita and A. Astuti, “Sintesis dan Karakterisasi Sifat Optik Nanokomposit Fe3O4@CQD (Carbon Quantum Dots),” J. Fis. Unand, vol. 12, no. 2, pp. 310–315, 2023, doi: 10.25077/jfu.12.2.310-315.2023.
S. Widodo, “Teknologi Pembuatan Magnetite Nanopartikel Dengan Metode Sol-Gel Untuk Lapisan Aktif Sensor Gas,” Techno-Socio Ekon., vol. 15, no. 2, pp. 98–105, 2022, doi: 10.32897/techno.2022.15.2.1216.
S. Taib and E. Suharyadi, “Sintesis Nanopartikel Magnetite (Fe3O4) dengan Template silika (SiO2) dan Karakterisasi Sifat Kemagnetannya,” Indones. J. Appl. Phys., vol. 5, no. 01, p. 23, 2015, doi: 10.13057/ijap.v5i01.256.
S. Husain et al., “Potensi Nanokomposit Fe3O4@C dari Bijih Besi Sebagai Pendeteksi Kadar Glukosa,” Positron, vol. 9, no. 2, p. 44, 2019, doi: 10.26418/positron.v9i2.32771.
A. V. Ramesh, D. Rama Devi, S. Mohan Botsa, and K. Basavaiah, “Facile green synthesis of Fe3O4 nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue,” J. Asian Ceram. Soc., vol. 6, no. 2, pp. 145–155, 2018, doi: 10.1080/21870764.2018.1459335.
A. Siti Zulaicha, I. Syahjoko Saputra, I. Puspita Sari, and D. Annas, “Sintesis dan Kararkterisasi Modifikasi Mikropartikel Magnetit (Fe3O4) Dalam Pemanfaatan Karat dengan Ekstrak Daun Ilalang (Imperata Cylindrica L),” J. Jejaring Mat. dan Sains, vol. 2, no. 2, pp. 51–55, 2020, doi: 10.36873/jjms.2020.v2.i2.405.
A. W. Y. Putra Parmita et al., “Studi Pengaruh Temperatur Kalsinasi dalam Pembentukan Nanomagnetite dengan Metode Green Synthesis Ekstrak Daun Nanas,” SPECTA J. Technol., vol. 7, no. 2, pp. 584–592, 2023, doi: 10.35718/specta.v7i2.940.
M. Syihabuddin, “GREEN SYNTHESIS NANOPARTIKEL Fe3O4 DENGAN BIOREDUKTOR EKSTRAK DAUN MIMBA (Azadirachta indica) : APLIKASI SEBAGAI MATERIAL FOTOKATALIS DEGRADASI METHYLENE BLUE,” vol. 13, pp. 118–123, 2024.
T. Zulfikar et al., “Branding dan Digital Marketing Meningkatkan Penjualan pada Pelaku Usaha Dodol Nanas Desa Tambakmekar Jalancagak Kabupaten Subang,” J. Abdimas Perad., vol. 3, no. 1, pp. 41–47, 2022, doi: 10.54783/ap.v3i1.7.
S. Gul et al., “Enhanced Adsorption of Rhodamine B on Biomass of Cypress/False Cypress (Chamaecyparis lawsoniana) Fruit: Optimization and Kinetic Study,” Water (Switzerland), vol. 14, no. 19, 2022, doi: 10.3390/w14192987.
V. Damogalad, H. Jaya Edy, and H. Sri Supriati, “Formulasi Krim Tabir Surya Ekstrak Kulit Nanas (Ananas Comosus L Merr) Dan Uji in Vitro Nilai Sun Protecting Factor (Spf),” PHARMACON J. Ilm. Farm. – UNSRAT, vol. 2, no. 02, pp. 2302–2493, 2013.
R. Bemis, F. Deswardani, H. Heriyanti, R. D. Puspitasari, and N. Azizah, “Green Synthesis of Silver Nanoparticles Using Areca Catechu L Peel Bioreductor as an Antibacterial Escherichia Coli and Staphylococcus Aureus,” IJCA (Indonesian J. Chem. Anal., vol. 6, no. 2, pp. 176–186, 2023, doi: 10.20885/ijca.vol6.iss2.art9.
G. M. Sulaiman, A. T. Tawfeeq, and A. S. Naji, “Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines,” Artif. Cells, Nanomedicine Biotechnol., vol. 46, no. 6, pp. 1215–1229, 2018, doi: 10.1080/21691401.2017.1366335.
N. R. Jannah and D. Onggo, “Synthesis of Fe3O4 nanoparticles for colour removal of printing ink solution,” J. Phys. Conf. Ser., vol. 1245, no. 1, 2019, doi: 10.1088/1742-6596/1245/1/012040.
G. Wang, H. Zhang, and X. Liu, "Magnetic Interaction and Agglomeration Behavior of Iron Oxide Nanoparticles: An Insight into Morphological Influence," Journal of Magnetic Materials, vol. 427, no. 2, pp. 259-267, 2017.
X. Li, Y. Zhao, and Q. Chen, "Effect of Reaction Temperature on the Crystalline Growth and Morphology of Magnetic Nanoparticles," Materials Chemistry and Physics, vol. 230, no. 5, pp. 122-130, 2019.
J. Smith, T. Brown, and P. Johnson, "Effect of Contact Time on Adsorption Efficiency Using Activated Carbon as an Adsorbent," Journal of Environmental Chemistry, vol. 45, no. 3, pp. 123-130, 2020.
R. Kumar, A. Singh, and P. Gupta, "Optimization of Adsorption Parameters for Dye Removal: The Role of Contact Time, Adsorbent Dose, and pH," International Journal of Chemical Engineering, vol. 36, no. 4, pp. 245-253, 2019.
DOI: http://dx.doi.org/10.12962/j25493736.v9i2.21671
Refbacks
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.