SINTESIS SnO2-SiO2 MENGGUNAKAN DAUN KELAPA SAWIT SEBAGAI SUMBER SILIKA POTENSIAL DAN APLIKASINYA SEBAGAI DEKOLORISASI ZAT WARNA

SETYO EKO NUGROHO, SAL PRIMA YUDHA S, EVI MARYANTI, MUHAMAD ALVIN REAGEN

Abstract


Penelitian ini bertujuan untuk mensintesis padatan SnO2-SiO2 dari daun kelapa sawit yang digunakan untuk dekolorisasi malachite green oxalate. Daun kelapa sawit disiapkan melalui pencucian dengan menggunakan HCl 10%. SnO2-SiO2 disintesis menggunakan metode solid state dengan bantuan sedikit pelarut. Hasil sintesis dikarakterisasi menggunakan X-ray Diffractometer (XRD) X-Ray Fluoresence (XRF), dan Fourier Transform Infrared Spectroscopy (FTIR). Analisis XRD memperlihatkan SnO2-SiO2 memiliki fasa amorf untuk SiO2  dan kristal SnO2. Analisis FTIR memperlihatkan puncak Si-O-Si dan O-Si-O pada bilangan gelombang 1067 cm-1 dan 796 cm-1 serta puncak Sn-O-Sn pada bilangan gelombang 542 cm-1. SnO2-SiO2 menunjukkan dekolorisasi pada proses dekolorisasi malachite green oxalate. Persentase efisiensi dekolorisasi dan kapasitas terbaik didapatkan pada perlakuan SnO2-SiO2 pada lama penyinaran 180 menit dengan persentase efisiensi dekolorisasi 46,33 % dengan kapasitasi 6,952 mg/g. Model kinetika dan isoterm yang didapatkan dalam proses dekolorisasi MGO oleh SnO2-SiO2 merupakan model kinetika reaksi orde semu pertama dengan nilai konstanta -0,0135 menit-1 dan Model isoterm Freundlich dengan nilai Kf16.545 L/mg. Kinerja dekolorisasi yang dihasilkan merupakan hasil sinergis antara SnO2 dan padatan hasil pembakaran daun kelapa sawit.


Keywords


Daun kelapa Sawit, SnO2-SiO2, dan Penghilangan malachite green oxalate

Full Text:

PDF

References


B. Bathula, T. R. Gurugubelli, J. Yoo, and K. Yoo, “Recent Progress in the Use of SnO2 Quantum Dots: From Synthesis to Photocatalytic Applications,” Catalysts, vol. 13, no. 4, p. 765, Apr. 2023, doi: 10.3390/catal13040765.

Y. Masuda, “Recent advances in SnO2 nanostructure based gas sensors,” Sens Actuators B Chem, vol. 364, p. 131876, Aug. 2022, doi: 10.1016/j.snb.2022.131876.

S. Zhao et al., “SnO 2 as Advanced Anode of Alkali‐Ion Batteries: Inhibiting Sn Coarsening by Crafting Robust Physical Barriers, Void Boundaries, and Heterophase Interfaces for Superior Electrochemical Reaction Reversibility,” Adv Energy Mater, vol. 10, no. 6, Feb. 2020, doi: 10.1002/aenm.201902657.

R. Vijayan, G. S. Kumar, G. Karunakaran, N. Surumbarkuzhali, S. Prabhu, and R. Ramesh, “Microwave combustion synthesis of tin oxide-decorated silica nanostructure using rice husk template for supercapacitor applications,” Journal of Materials Science: Materials in Electronics, vol. 31, no. 7, pp. 5738–5745, Apr. 2020, doi: 10.1007/s10854-020-03142-y.

I. Fatimah, G. Fadillah, I. Sahroni, A. Kamari, S. Sagadevan, and R.-A. Doong, “Nanoflower-like composites of ZnO/SiO2 synthesized using bamboo leaves ash as reusable photocatalyst,” Arabian Journal of Chemistry, vol. 14, no. 3, p. 102973, Mar. 2021, doi: 10.1016/j.arabjc.2020.102973.

W. Hendra Saputera, C. Egiyawati, A. Setyani Putrie, A. Fathoni Amri, J. Rizkiana, and D. Sasongko, “Titania Modified Silica from Sugarcane Bagasse Waste for Photocatalytic Wastewater Treatment,” IOP Conf Ser Mater Sci Eng, vol. 1143, no. 1, p. 012073, Apr. 2021, doi: 10.1088/1757-899X/1143/1/012073.

E. Onoja et al., “Insights into the physicochemical properties of the Malaysian oil palm leaves as an alternative source of industrial materials and bioenergy,” Malaysian Journal of Fundamental and Applied Sciences, vol. 13, no. 4, pp. 623–631, Dec. 2017, doi: 10.11113/mjfas.v0n0.681.

S. Yudha S., P. Robkhob, T. Imboon, A. Falahudin, Asdim, and S. Thongmee, “ZnO-SiO2 and Zn2SiO4 Synthesis Utilizing Oil Palm Leaves for Degradation of Methylene Blue Dye in Aqueous Solution,” Journal of the Indonesian Chemical Society, vol. 3, no. 2, p. 94, Aug. 2020, doi: 10.34311/jics.2020.03.2.94.

S. Yudha S, A. Falahudin, Asdim, and J. I. Han, “In Situ Preparation of Gold–Silica Particles from a Mixture of Oil Palm Leaves and Chloroauric Acid for Reduction of Nitroaromatic Compounds in Water,” Waste Biomass Valorization, vol. 12, no. 7, pp. 3773–3780, Jul. 2021, doi: 10.1007/s12649-020-01273-1.

S. Yudha S, C. Banon, A. Falahudin, M. A. Reagen, N. H. M. Kaus, and S. Salaeh, “Fabrication of Silver-Silica Composite using the Carbo-thermal Degradation of Oil Palm Leaves for the Reduction of p-nitrophenol,” International Journal of Technology, vol. 14, no. 2, p. 290, Apr. 2023, doi: 10.14716/ijtech.v14i2.5608.

Y. Huang et al., “Silica nanoparticles: Biomedical applications and toxicity,” Biomedicine & Pharmacotherapy, vol. 151, p. 113053, Jul. 2022, doi: 10.1016/j.biopha.2022.113053.

S. Nasreen, A. Urooj, U. Rafique, and S. Ehrman, “Functionalized mesoporous silica: absorbents for water purification,” Desalination Water Treat, vol. 57, no. 60, pp. 29352–29362, Dec. 2016, doi: 10.1080/19443994.2016.1185744.

G. G. kumar, C. J. Kirubaharan, A. Rhan Kim, and D. J. Yoo, “Catalytic Activity of Green and Recyclable Nanometric Tin Oxide-Doped Silica Nanospheres in the Synthesis of Imines,” Ind Eng Chem Res, vol. 51, no. 48, pp. 15626–15632, Dec. 2012, doi: 10.1021/ie302301p.

T. Zhang et al., “Efficient production of 5-hydroxymethylfurfural from glucose over silica-tin oxide composite catalysts,” Microporous and Mesoporous Materials, vol. 311, p. 110717, Feb. 2021, doi: 10.1016/j.micromeso.2020.110717.

A. A. Yelwande and M. K. Lande, “An efficient one-pot three-component synthesis of 7-amino-2, 4-dioxo-5-aryl-1,3,4,5-tetrahydro-2 H-pyrano[2,3-d]pyrimidine-6-carbonitriles catalyzed by SnO2/SiO2 nanocomposite,” Research on Chemical Intermediates, vol. 46, no. 12, pp. 5479–5498, Dec. 2020, doi: 10.1007/s11164-020-04273-x.

A. Shaikh and G. Q. Shar, “Preparation of Silica Coated Tin Oxide Nano-Catalyst as an Efficient Applicant for Catalytic Degradation of Eosin-Y Dye,” Türk Fizyoterapi ve Rehabilitasyon Dergisi/Turkish Journal of Physiotherapy and Rehabilitation, vol. 32, pp. 28888–28912, Nov. 2021.

L. Hermida, L. Purwati, and J. Agustian, Inkoporasi Oksida Timah (SnO 2 ) ke dalam Silika Berpori dari Kaolin Alam Lampung dan Kajian Aplikasinya sebagai Fotokatalis untuk Fotodegradasi Rhodamin B Incorporation of Tin Oxide (SnO 2 ) into Porous Silica from Lampung Natural Kaolinite and Its Application Study as a Photocatalyst for Photodegradation of Rhodamine B. 2020.

D. Gulevich et al., “Nanocomposites SnO2/SiO2 for CO Gas Sensors: Microstructure and Reactivity in the Interaction with the Gas Phase,” Materials, vol. 12, no. 7, p. 1096, Apr. 2019, doi: 10.3390/ma12071096.

N. R. Srinivasan and R. Bandyopadhyaya, “Highly accessible SnO2 nanoparticle embedded SBA-15 mesoporous silica as a superior photocatalyst,” Microporous and Mesoporous Materials, vol. 149, no. 1, pp. 166–171, Feb. 2012, doi: 10.1016/j.micromeso.2011.06.037.

D. Skoda et al., “Mesoporous SnO 2 –SiO 2 and Sn–silica–carbon nanocomposites by novel non-hydrolytic templated sol–gel synthesis,” RSC Adv, vol. 6, no. 73, pp. 68739–68747, 2016, doi: 10.1039/C6RA16556G.

F. Adam, J. N. Appaturi, Z. Khanam, R. Thankappan, and Mohd. A. M. Nawi, “Utilization of tin and titanium incorporated rice husk silica nanocomposite as photocatalyst and adsorbent for the removal of methylene blue in aqueous medium,” Appl Surf Sci, vol. 264, pp. 718–726, Jan. 2013, doi: 10.1016/j.apsusc.2012.10.106.

D. de Guzman and R. de Leon, “Preliminary Optimization and Kinetics of SnCl2-HCl Catalyzed Hydrothermal Conversion of Microcrystalline Cellulose to Levulinic Acid,” J Renew Mater, vol. 9, no. 1, pp. 145–162, 2021, doi: 10.32604/jrm.2021.011646.

M. Waseem, S. Mustafa, A. Naeem, K. Shah, I. Shah, and Ihsan-Ul-Haque, “Synthesis and characterization of silica by sol-gel method,” J. Pak. Mater. Soc., vol. 3, pp. 19–21, Jul. 2009.

K. C. Suresh, S. Surendhiran, P. Manoj Kumar, E. Ranjth Kumar, Y. A. S. Khadar, and A. Balamurugan, “Green synthesis of SnO2 nanoparticles using Delonix elata leaf extract: Evaluation of its structural, optical, morphological and photocatalytic properties,” SN Appl Sci, vol. 2, no. 10, p. 1735, Oct. 2020, doi: 10.1007/s42452-020-03534-z.

P. Paredes et al., “Sunlight-Driven Photocatalytic Degradation of Methylene Blue with Facile One-Step Synthesized Cu-Cu2O-Cu3N Nanoparticle Mixtures,” Nanomaterials, vol. 13, no. 8, p. 1311, Apr. 2023, doi: 10.3390/nano13081311.

I. Fatimah et al., “Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves,” Heliyon, vol. 5, no. 11, p. e02766, Nov. 2019, doi: 10.1016/j.heliyon.2019.e02766.

G. Asefa, D. Negussa, G. Lemessa, and T. Alemu, “The Study of Photocatalytic Degradation Kinetics and Mechanism of Malachite Green Dye on Ni–TiO2 Surface Modified with Polyaniline,” J Nanomater, vol. 2024, pp. 1–11, Feb. 2024, doi: 10.1155/2024/5259089.

B. Brazesh, S. M. Mousavi, M. Zarei, M. Ghaedi, S. Bahrani, and S. A. Hashemi, “Chapter 9 - Biosorption,” in Interface Science and Technology, vol. 33, M. Ghaedi, Ed., Elsevier, 2021, pp. 587–628. doi: https://doi.org/10.1016/B978-0-12-818805-7.00003-5.

J. C. Igwe and A. A. Abia, “Adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob,” Eclética Química, vol. 32, no. 1, pp. 33–42, 2007, doi: 10.1590/S0100-46702007000100005.




DOI: http://dx.doi.org/10.12962%2Fj25493736.v10i1.22229

Refbacks

  • There are currently no refbacks.


Licence Creative Commons
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.