Compositional and Thermal Effects on the Phase Stability and Crystallinity of Cu₂SnS₃ Nanoparticles

Agus Ismail, Destia Nurika, Agus Sukarto Wismogroho, Muhammad Ikhlasul Amal

Abstract


Cu₂SnS₃ (CTS) is a promising semiconductor for photovoltaic applications, yet its synthesis via solid-state sintering remains insufficiently explored. This study examines the phase evolution and structural properties of CTS thin films fabricated from Cu, Sn, and S elemental precursors sintered at 300 °C, 400 °C, 500 °C, and 600 °C. X-ray diffraction (XRD) analysis confirmed that stoichiometric CTS attained optimal phase purity at 500°C, whereas off-stoichiometric compositions resulted in secondary phases such as Cu₂S, Cu₉.₆₇Sn₂.₃₃S₁₃, and SnS₂. Scanning electron microscopy (SEM) revealed microstructural transformations, with well-defined crystalline domains emerging at 500°C but excessive grain coalescence in Cu-rich samples. Energy-dispersive X-ray spectroscopy (EDX) verified compositional variations, underscoring the critical role of stoichiometry in phase stability. These findings demonstrate that precise compositional control and optimized sintering conditions are essential for high-purity CTS films, advancing their potential for enhanced photovoltaic performance and long-term operational stability.


Keywords


Kimia Material

Full Text:

PDF

References


X. Liang, Q. Cai, W. Xiang, Z. Chen, J. Zhong, Y. Wang, M. Shao, Z. Li, J. Mater. Sci. Technol., vol. 29, pp. 231–236, (2013); https://doi.org/10.1016/j.jmst.2012.12.011

B. Li, Y. Xie, J. Huang, Y. Qian, J. Solid State Chem., vol. 153, pp. 170–173, (2000); https://doi.org/10.1006/jssc.2000.8772

C. Wu, Z. Hu, C. Wang, H. Sheng, J. Yang, Y. Xie, Appl. Phys. Lett., vol. 91, pp. 143104, (2007); https://doi.org/10.1063/1.2790491

A. Lokhande, et al., J. Alloys Compd., vol. 656, pp. 295–310, (2016); https://doi.org/10.1016/j.jallcom.2015.09.232

A. Kanai, et al., Jpn. J. Appl. Phys., vol. 54(8S1), pp. 08KC06, (2015); 10.7567/JJAP.54.08KC06

H. Nautiyal, K. Lohani, B. Mukherjee, E. Isotta, M. A. Malaguti, N. Ataollahi, N., Pallecchi, I., Putti, M., Misture, S.T., Rebuffi, L. and P. Scardi, Nanomaterials, vol. 13(2), pp. 366, (2023); https://doi.org/10.3390/nano13020366

S.B. Jathar, S.R. Rondiya, Y.A. Jadhav, D.S. Nilegave, R.W. Cross, S.V. Barma, M.P. Nasane, S.A. Gaware, B.R. Bade, S.R. Jadkar, et al., Chem. Mater., vol. 33, pp. 1983–1993, (2021); https://doi.org/10.1016/j.jallcom.2017.03.135

A.C. Lokhande, A.A. Yadav, J.Y. Lee, M. He, S.J. Patil, V.C. Lokhande, C.D. Lokhande, J.H. Kim, J. Alloys Compd., vol. 709, pp. 92–103, (2017); https://doi.org/10.1016/j.jallcom.2017.03.135

A.S. Mathur, S. Upadhyay, P.P. Singh, B. Sharma, P. Arora, V.K. Rajput, P. Kumar, D. Singh, B.P. Singh, Opt. Mater., vol. 119, pp. 111314, (2021); https://doi.org/10.1016/j.optmat.2021.111314

Q. Tan, W. Sun, Z. Li, J.F. Li, J. Alloys Compd., vol. 672, pp. 558–563, (2016); https://doi.org/10.1016/j.jallcom.2016.02.185

S. Rahaman, M.K. Singha, M.A. Sunil, K. Ghosh, Superlattice Microstruct., vol. 145, pp. 1–10, (2020); https://doi.org/10.1016/j.spmi.2020.106589

A. Kanai, M. Sugiyama, Sol. Energy Mater. Sol. Cells, vol. 231, pp. 1–10, (2021); https://doi.org/10.1016/j.solmat.2021.111315

M. Bouaziz, J. Ouerfelli, S.K. Srivastava, J.C. Bernède, M. Amlouk, Vacuum, vol. 85(8), pp. 783–786, (2011); https://doi.org/10.1016/j.vacuum.2010.10.001

K. Tanaka, M. Kowata, F. Yoshihisa, S. Imai, W. Yamazaki, Thin Solid Films, vol. 697, pp. 137820, (2020); https://doi.org/10.1016/j.tsf.2020.137820

Z. Tang, K. Kosaka, H. Uegaki, J. Chantana, Y. Nukui, D. Hironiwa, T. Minemoto, Phys. Status Solidi A, vol. 212, pp. 2289–2296, (2015); https://doi.org/10.1002/pssa.201532121

X. Chen, C. Li, B. Li, Y. Ying, S. Ye, D.N. Zakharov, G. Zhou, ACS Nano, vol. 18(45), pp. 31160–31173, (2024); https://doi.org/10.1021/acsnano.4c09056

D.L. Johnson, in: Concise Encyclopedia of Advanced Ceramic Materials, Pergamon, pp. 454–458, (1991); https://10.1016/0921-5093(93)90458-q

Y. Li, H. Sun, J. Song, Z. Zhang, H. Lan, L. Tian, K. Xie, Materials, vol. 16(5), pp. 2019, (2023); https://doi.org/10.3390/ma16052019




DOI: http://dx.doi.org/10.12962%2Fj25493736.v10i1.22811

Refbacks

  • There are currently no refbacks.


Licence Creative Commons
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.