Investigasi Teoretis Interaksi Nonkovalen antara β-Siklodekstrin dan Hidroksiklorokuin

Atthar Luqman Ivansyah

Abstract


There was an outbreak with symptoms similar to SARS caused by the SARS-CoV-2 virus in the People's Republic of China at the end of 2019. The rapid spread of the virus, even in Indonesia, led to a pandemic status being given by the WHO. The use of current medications before a vaccine is identified and ready for help is one alternative to reducing COVID-19 patients. As a candidate for anti-COVID-19 drugs, Hydroxychloroquine has been extensively studied and has now reached the clinical trial stage. Hydroxychloroquine's solubility in water, however, is so limited that it affects its low human body bioavailability. The development of a stable inclusion complex with β-cyclodextrin is one way to increase Hydroxychloroquine's solubility in water. This research investigated the interaction between β-cyclodextrin and Hydroxychloroquine through molecular docking analysis and a semiempirical quantum process. The results of the semiempirical quantum method and the study of molecular docking suggest that β-cyclodextrin and Hydroxychloroquine are a stable inclusion complex. Hydroxychloroquine's solubility in aqueous solution can also be increased by forming an inclusion complex with β-cyclodextrin.

Keywords


β-Cyclodextrin; Hydroxychloroquine; SARS-CoV-2; COVID-19; Inclusion Complex

Full Text:

Full Text

References


V. R. Sinha, R. Anitha, S. Ghosh, A. Nanda, and R. Kumria, “Complexation of celecoxib with β-cyclodextrin: Characterization of the interaction in solution and in solid state,” J. Pharm. Sci., vol. 94, no. 3, pp. 676–687, Mar. 2005.

C. Anselmi et al., “Analytical characterization of a ferulic acid/γ-cyclodextrin inclusion complex,” J. Pharm. Biomed. Anal., vol. 40, no. 4, pp. 875–881, Mar. 2006.

K. L. Yap, X. Liu, J. C. Thenmozhiyal, and P. C. Ho, “Characterization of the 13-cis-retinoic acid/cyclodextrin inclusion complexes by phase solubility, photostability, physicochemical and computational analysis,” Eur. J. Pharm. Sci., vol. 25, no. 1, pp. 49–56, May 2005.

T. Irie and K. Uekama, “Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation,” Journal of Pharmaceutical Sciences, vol. 86, no. 2. John Wiley and Sons Inc., pp. 147–162, Feb. 01, 1997.

M. E. Brewster and T. Loftsson, “Cyclodextrins as pharmaceutical solubilizers,” Advanced Drug Delivery Reviews, vol. 59, no. 7. Elsevier, pp. 645–666, Jul. 30, 2007.

R. L. Carrier, L. A. Miller, and I. Ahmed, “The utility of cyclodextrins for enhancing oral bioavailability,” Journal of Controlled Release, vol. 123, no. 2. Elsevier, pp. 78–99, Nov. 06, 2007.

K. Uekama, F. Hirayama, and T. Irie, “Cyclodextrin drug carrier systems,” Chem. Rev., vol. 98, no. 5, pp. 2045–2076, 1998.

F. Hirayama and K. Uekama, “Cyclodextrin-based controlled drug release system,” Advanced Drug Delivery Reviews, vol. 36, no. 1. Elsevier Science Publishers B.V., pp. 125–141, Mar. 01, 1999.

M. E. Davis and M. E. Brewster, “Cyclodextrin-based pharmaceutics: Past, present and future,” Nature Reviews Drug Discovery, vol. 3, no. 12. pp. 1023–1035, Dec. 2004.

T. Loftsson and M. E. Brewster, “Pharmaceutical applications of cyclodextrins: Effects on drug permeation through biological membranes,” J. Pharm. Pharmacol., vol. 63, no. 9, pp. 1119–1135, Sep. 2011.

N. Grancher et al., “Improved antiviral activity in vitro of ribavirin against measles virus after complexation with cyclodextrins,” Antiviral Res., vol. 62, no. 3, pp. 135–137, Jun. 2004

C. Nicolazzi, V. Venard, A. Le Faou, and C. Finance, “In vitro antiviral efficacy of the ganciclovir complexed with β-cyclodextrin on human cytomegalovirus clinical strains,” Antiviral Res., vol. 54, no. 2, pp. 121–127, May 2002

F. Carrouel et al., “COVID-19: A Recommendation to Examine the Effect of Mouthrinses with β-Cyclodextrin Combined with Citrox in Preventing Infection and Progression,” J. Clin. Med., vol. 9, no. 4, p. 1126, Apr. 2020

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeerschd, E. Zurek, and G. R. Hutchison, “Avogadro: An advanced semantic chemical editor, visualization, and analysis platform,” J. Cheminform., vol. 4, no. 8, p. 17, Aug. 2012.

E. Krieger and G. Vriend, “New ways to boost molecular dynamics simulations,” J. Comput. Chem., vol. 36, no. 13, pp. 996–1007, May 2015.

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

S. Setiadji, C. D. D. Sundari, M. A. Ramdhani, A. B. K. Umam, and A. L. Ivansyah, “Theoretical Investigation of Inclusion Complex between Omeprazole Enantiomers and Carboxymethyl-β-Cyclodextrin,” in IOP Conference Series: Materials Science and Engineering, Jan. 2018, vol. 288, no. 1, p. 012138.

A. L. Ivansyah, E. S. Nurhidayah, C. D. D. Sundari, M. A. Martoprawiro, and B. Buchari, “Computational study of inclusion complex between Omeprazole enantiomer and β-Cyclodextrin: NBO and RDG analysis,” in Journal of Physics: Conference Series, Dec. 2019, vol. 1402, no. 5.

S. Setiadji, C. D. D. Sundari, B. W. Nuryadin, H. Zayyinunnisya, R. Cahyandari, and A. L. Ivansyah, “Computational Study of Inclusion Complexes between Omeprazole Enantiomer with Hydroxypropyl-β-Cyclodextrin,” in Journal of Physics: Conference Series, Sep. 2018, vol. 1090, no. 1.

S. Setiadji, C. D. D. Sundari, M. A. Ramdhani, A. B. K. Umam, and A. L. Ivansyah, “Theoretical Investigation of Inclusion Complex between Omeprazole Enantiomers and Carboxymethyl-β-Cyclodextrin,” in IOP Conference Series: Materials Science and Engineering, Jan. 2018, vol. 288, no. 1.

A. L. Ivansyah, M. A. Martoprawiro, and Buchari, “Computational modeling of inclusion complex of r/s-omeprazole with β-cyclodextrin using oniom2 method,” in Journal of Physics: Conference Series, Mar. 2017, vol. 812, no. 1.

C. Betzel, W. Saenger, B. E. Hingerty, and G. M. Brown, “Circular and Flip-Flop Hydrogen Bonding in β-Cyclodextrin Undecahydrate: A Neutron Diffraction Study,” J. Am. Chem. Soc., vol. 106, no. 24, pp. 7545–7557, Nov. 1984.

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=BUVSEQ02&DatabaseToSearch=Published. Accessed November 10, 2020.

I. Andreadelis et al., “Charting the structural and thermodynamic determinants in phenolic acid natural product – cyclodextrin encapsulations,” J. Biomol. Struct. Dyn., pp. 1–17, Apr. 2020.

T. F. Kellici et al., “Mapping the interactions and bioactivity of quercetin—(2-hydroxypropyl)-β-cyclodextrin complex,” Int. J. Pharm., vol. 511, no. 1, pp. 303–311, Sep. 2016.

D. Ntountaniotis et al., “Host-Guest Interactions between Candesartan and Its Prodrug Candesartan Cilexetil in Complex with 2-Hydroxypropyl-β-cyclodextrin: On the Biological Potency for Angiotensin II Antagonism,” Mol. Pharm., vol. 16, no. 3, pp. 1255–1271, Mar. 2019.

T. F. Kellici et al., “Investigation of the interactions of silibinin with 2-hydroxypropyl-β-cyclodextrin through biophysical techniques and computational methods,” Mol. Pharm., vol. 12, no. 3, pp. 954–965, Mar. 2015.

G. G. Kordopati et al., “A novel synthetic luteinizing hormone-releasing hormone (LHRH) analogue coupled with modified β-cyclodextrin: Insight into its intramolecular interactions,” Biochim. Biophys. Acta - Gen. Subj., vol. 1850, no. 1, pp. 159–168, Jan. 2015.

G. Leonis et al., “Antihypertensive activity and molecular interactions of irbesartan in complex with 2‐hydroxypropyl‐β‐cyclodextrin,” Chem. Biol. Drug Des., vol. 96, no. 1, pp. 668–683, Jul. 2020.

https://go.drugbank.com/drugs/DB01611. Accessed November 10, 2020.




DOI: http://dx.doi.org/10.12962/j25493736.v5i2.7962

Refbacks

  • There are currently no refbacks.


Licence Creative Commons
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.