Mini-Ulasan Adsorpsi Anthrasena, Fenanthrena dan Fluorena menggunakan Material Berbasis Karbon Berpori, Silika dan Zeolit

Winda Br Purba, Grandprix Thomryes Marth Kadja, Muhammad Yudhistira Azis

Abstract


Senyawa Polisiklik Aromatik Hidrokarbon (PAH) merupakan salah satu senyawa polutan organik yang bersifat karsinogen, mutagen dan teratogen pada organisme, sehingga dapat bertahan dalam air untuk waktu yang lama. Antrasena, Fenantrena, dan Fluorena adalah jenis PAH yang banyak dihasilkan dari limbah industri. Penghilangan senyawa PAH dilakukan dengan metode adsorpsi sebagai metode paling efektif untuk pengolahan air yang tercemar karena biaya yang rendah, sederhana dan monitoring  kandungan polutan. Pada penelitian ini telah dilakukan studi literatur terhadap adsorpsi PAH dengan berbagai adsorben bahan karbon berpori seperti Karbon Aktif, Biochar dan Graphene dan adsorben bahan mesoporus Silika seperti PMO, MCM-41, NH2-SBA-15, dan klinoptilolit (zeolite). Terdapat beberapa faktor yang mempengaruhi kemampuan adsorpsi dari Karbon aktif dan silika seperti luas permukaan spesifik, ukuran pori dan volume pori adsorben. Parameter adsorpsi PAH dengan karbon aktif dan silika yang diperoleh seperti pH dalam rentang 2-12, waktu kontak 1-24 jam, suhu 20-45°C, konsentrasi PAH 2-60 mg/L memberikan acuan rentang spesifik dalam mengevaluasi kinerja adsorpsi PAH dengan adsorben yang digunakan.


Keywords


adsorpsi; adsorben; PAH

Full Text:

Full Text

References


A. O. Adeniji, O. O. Okoh, and A. I. Okoh, “Analytical Methods for Polycyclic Aromatic Hydrocarbons and their Global Trend of Distribution in Water and Sediment: A Review,” Recent Insights Pet. Sci. Eng., 2018, doi: 10.5772/intechopen.71163.

Q. Wang et al., “Chemosphere Evaluation of fatty acid derivatives in the remediation of aged PAH- contaminated soil and microbial community and degradation gene response,” Chemosphere, vol. 248, p. 125983, 2020, doi: 10.1016/j.chemosphere.2020.125983.

M. A. Nkansah, A. A. Christy, and T. Barth, “The use of anthracene as a model compound in a comparative study of hydrous pyrolysis methods for industrial waste remediation,” Chemosphere, vol. 84, no. 4, pp. 403–408, 2011, doi: 10.1016/j.chemosphere.2011.03.061.

M. El Khames Saad, R. Khiari, E. Elaloui, and Y. Moussaoui, “Adsorption of anthracene using activated carbon and Posidonia oceanica,” Arab. J. Chem., vol. 7, no. 1, pp. 109–113, 2014, doi: 10.1016/j.arabjc.2013.11.002.

A. Mojiri, J. L. Zhou, A. Ohashi, N. Ozaki, and T. Kindaichi, “Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments,” Sci. Total Environ., vol. 696, p. 133971, 2019, doi: 10.1016/j.scitotenv.2019.133971.

A. J. Forsgren, “Wastewater treatment: Occurrence and fate of polycyclic aromatic hydrocarbons (PAHs),” Wastewater Treat. Occur. Fate Polycycl. Aromat. Hydrocarb., pp. 1–238, 2015.

G. Gbeddy, A. Goonetilleke, G. A. Ayoko, and P. Egodawatta, “Transformation and degradation of polycyclic aromatic hydrocarbons (PAHs) in urban road surfaces: Influential factors, implications and recommendations,” Environ. Pollut., p. 113510, 2019, doi: 10.1016/j.envpol.2019.113510.

C. F. Chang, C. Y. Chang, K. H. Chen, W. T. Tsai, J. L. Shie, and Y. H. Chen, “Adsorption of naphthalene on zeolite from aqueous solution,” J. Colloid Interface Sci., vol. 277, no. 1, pp. 29–34, 2004, doi: 10.1016/j.jcis.2004.04.022.

H. Zhao, J. Ma, Q. Zhang, Z. Liu, and R. Li, “Adsorption and Diffusion of n -Heptane and Toluene over Mesoporous ZSM-5 Zeolites,” Ind. Eng. Chem. Res., vol. 53, no. 35, pp. 13810–13819, 2014, doi: 10.1021/ie502496v.

H. Gupta, “Removal of Phenanthrene from Water Using Activated Carbon Developed from Orange Rind,” Int. J. Sci. Res. Environ. Sci., vol. 3, no. 7, pp. 248–255, 2015, doi: 10.12983/ijsres-2015-p0248-0255.

H. Gupta, “Anthracene removal from water onto activated carbon derived from vehicular tyre,” Sep. Sci. Technol., vol. 53, no. 4, pp. 613–625, 2018, doi: 10.1080/01496395.2017.1405038.

D. Eeshwarasinghe, P. Loganathan, M. Kalaruban, D. P. Sounthararajah, J. Kandasamy, and S. Vigneswaran, “Removing polycyclic aromatic hydrocarbons from water using granular activated carbon: kinetic and equilibrium adsorption studies,” Environ. Sci. Pollut. Res., vol. 25, no. 14, pp. 13511–13524, 2018, doi: 10.1007/s11356-018-1518-0.

A. Rasheed, F. Farooq, U. Rafique, S. Nasreen, and M. Aqeel Ashraf, “Analysis of sorption efficiency of activated carbon for removal of anthracene and pyrene for wastewater treatment,” Desalin. Water Treat., vol. 57, no. 1, pp. 145–150, 2016, doi: 10.1080/19443994.2015.1015304.

W. Guo, S. Wang, Y. Wang, S. Lu, and Y. Gao, “Sorptive removal of phenanthrene from aqueous solutions using magnetic and non-magnetic rice husk-derived biochars,” R. Soc. Open Sci., vol. 5, no. 5, 2018, doi: 10.1098/rsos.172382.

P. Das, S. Goswami, and S. Maiti, “Removal of naphthalene present in synthetic waste water using novel Graphene /Graphene Oxide nano sheet synthesized from rice straw: comparative analysis, isotherm and kinetics,” Front. Nanosci. Nanotechnol., vol. 2, no. 1, pp. 38–42, 2016, doi: 10.15761/fnn.1000107.

C. B. Vidal et al., “Adsorption of polycyclic aromatic hydrocarbons from aqueous solutions by modified periodic mesoporous organosilica,” J. Colloid Interface Sci., vol. 357, no. 2, pp. 466–473, 2011, doi: 10.1016/j.jcis.2011.02.013.

A. Balati, A. Shahbazi, M. M. . Amini, and S. H. Hashemi, “Adsorption of polycyclic aromatic hydrocarbons from wastewater by using silica-based organic – inorganic nanohybrid material,” J. Water Reuse Desalin., vol. 05, no. 1, pp. 50–63, 2015, doi: 10.2166/wrd.2014.013.

Y. Hu, Y. He, X. Wang, and C. Wei, “hydrophobic MCM-41 molecular sieves,” Appl. Surf. Sci., pp. 3–6, 2014, doi: 10.1016/j.apsusc.2014.05.173.

T. M. Albayati and K. R. Kalash, “Polycyclic aromatic hydrocarbons adsorption from wastewater using different types of prepared mesoporous materials MCM-41in batch and fixed bed column,” Process Saf. Environ. Prot., pp. 13–18, 2019, doi: 10.1016/j.psep.2019.11.007.

M. Hedayati, “Removal Of Polycylic Aromatic Hydrocarbon From Deionized Water & Landfill Leachate By Using Modified Clinoptilolites,” 2018.

Y. Sun, S. Yang, G. Zhao, Q. Wang, and X. Wang, “Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides,” Chem. - An Asian J., vol. 8, no. 11, pp. 2755–2761, 2013, doi: 10.1002/asia.201300496.

N. Ayawei, A. N. Ebelegi, and D. Wankasi, “Modelling and Interpretation of Adsorption Isotherms,” J. Chem., vol. 2017, no. September, 2017, doi: 10.1155/2017/3039817.

A. Kumar et al., “One pot Green Synthesis of Nano magnesium oxide-carbon composite : Preparation , characterization and application towards anthracene adsorption,” J. Clean. Prod., vol. 237, 2019, doi: 10.1016/j.jclepro.2019.117691.




DOI: http://dx.doi.org/10.12962/j25493736.v6i2.9725

Refbacks

  • There are currently no refbacks.


Licence Creative Commons
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.