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We review recent developments in the study of jump classes in com-

putably enumerable degrees, with special emphasis on the elementary differ-

ences among the jump classes.
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In this survey paper, we shall focus on results concerning jump classes in com-
putably enumerable degrees. As we only consider selected topics in the area, the
reader who is interested in recent developments of the subject in general may refer
to [3] and [6]. The latter also gives a comprehensive list of open problems. For
background material on computably enumerable sets and degrees, we recommend
the classic textbook of Soare [20].

We shall roughly follow the time line, from the birth of the subject in the 1930’s
to the present day. Various notions and terminologies will be introduced along the
way. We will end the paper with some open problems.

1. Model of Computation and Jump Operator

Computability Theory (also known as recursion theory) was born in the 1930’s,
largely due to the works of Gödel, Church and Turing. One of the motivating forces
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was to answer various decision problems. In general, a decision problem seeks an
answer to the following: Given a set A of natural numbers, find an algorithm which,
on input n, decides whether n is in A. Answering such questions naturally requires
a formal definition of algorithms. In the 1930’s, several definitions, arising from
Gödel’s notion of general recursive functions, Church’s λ-calculus, and Turing’s
model of computation known as a Turing machine, were proposed. It turns out
that these are all equivalent, in the sense that they all characterize the same class
of decidable problems and capture the essence of the concept of computability.

Today with the popularization of computers, we may say that a set A to be
decidable (or computable) if there is a program executable on an idealized computer
(i.e., with no time and memory limitation), so that given input n, it is able to tell
us whether n is in A within a finite amount of time. For example, the set of prime
numbers is computable.

There are uncountably many undecidable sets. A famous example is the so-
called halting set K using the idea of diagonalization. First of all, there is an
effective list {ϕe}, e = 0, 1, . . . of all algorithmically computable functions. To
have such a list, one must allow partial functions (whose domain is a proper subset
of natural numbers) to appear. Let ϕe(x)↓ mean x is in the domain of ϕe. The
halting set K can be defined as {e : ϕe(e)↓}. Although one can effectively list all
elements in K, it is impossible to do so for elements not in K.

This brings us to the notion of computably enumerable (c.e.) sets. Those are
sets that can be listed by computable functions. Noncomputable c.e. sets arise
naturally in mathematics. For example, the theorems of first-order logic, the word
problem for groups and the halting problem. For technical convenience, we code
all expressions in first order language, groups theory etc. as natural numbers and
by doing so, we may restrict our attention to sets of natural numbers.

There are sets harder or more complicated to compute than the computable
ones. One can ask for a way to compare the complexities of noncomputable sets.
This leads us to the notion of relative computability (reducibility) introduced by
Turing [21]. Informally, a set A is computable from another set B, if the mem-
bership of A can be decided by a program executable on an idealized computer
which has an extra hard disk containing all information about membership in B.
Formally, we say that A is Turing reducible to B, written A ≤T B, if there is a
Turing functional Φ such that A = ΦB . We can further define A to be Turing
equivalent to B, written A ≡T B, if both A ≤T B and B ≤T A. Clearly, ≡T is an
equivalence relation. The equivalence class containing a set A is called the Turing
degree of A. We often denote the degree of a set A by a = deg (A). A and B

having the same Turing degree informally means that they are of the same level
of unsolvability or complexity.
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The computable sets form the least Turing degree, denoted by 0. The classical
examples of undecidable problems, such as the set of theorems of first order logic
and halting problem, turn out to be in the same degree, called the complete degree.
We use 0′ (read as zero jump) to denote this special degree. In fact, for a set A, the
relativized halting problem A′ = {e : ΦA

e (e)↓} automatically produces a set not
computable from A. Moreover, it naturally induces the so-called jump operator
deg (A) 7→ deg (A′) on Turing degrees. It is well-defined since it respects Turing
reducibility, namely, A ≤T B implies A′ ≤T B′. Syntactically, A′ corresponds to
one additional quantifier over an A-computable predicate. The jump of a degree
a is denoted by a′ and its nth iteration by a(n). The jump operator has been one
of the main focuses in computability theory. Before discussing the structure of
local c.e. degrees, let us mention one recent breakthrough on the jump operator
by Shore and Slaman [19]:

Theorem 1.1 (Shore and Slaman) The jump operator is definable in the Tur-
ing degree structure.

2. Computably Enumerable Degrees and Jump

classes

We now focus our attention on the structure of c.e. degrees R = (R,≤T ), where R
is the set of all c.e. degrees (i.e., those containing a c.e. set) and ≤T is the Turing
reducibility relation. The degrees in this section shall refer to c.e. degree, unless
otherwise indicated.

The earliest milestone was the work of Post [14] where he showed the existence
of a greatest c.e. degree 0′, and asked whether there was a c.e. degree other than
0 and 0′. About 10 years later, Friedberg [5] and Muchnik [11] solved the problem
independently by constructing two incomparable c.e. degrees.

In the study of Turing degrees, besides the jump operator, the join operator
also plays an essential role. For Turing degrees a and b (not necessarily c.e.), the
join of a and b, denoted a ∨ b, is defined to be the least upper bound of a and b.
For any two degrees a and b, their join a ∨ b always exists, and is the degree of
A⊕B = {2x | x ∈ A} ∪ {2x + 1 | x ∈ B} for some sets A ∈ a and B ∈ b. Clearly,
R is closed under the join operator. Consequently, R is an upper semi-lattice with
least element 0 and greatest element 0′.

The jump operator is known not to be injective. Thus we can classify the
c.e. degrees a by means of the high/low hierarchy that measures the complexity
of the jumps of a.
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Definition 2.1 The jump classes (or the high/low hierarchy) are defined as fol-
lows:

Hn = {a ∈ R | a(n) = 0(n+1)},
Ln = {a ∈ R | a(n) = 0(n)}

where n ≥ 0.

An element of Hn (Ln) is called highn (lown), and for n = 1, we also call an
element of H1 (L1) to be high (low).

Under this classification, the c.e. degrees can be measured quantitatively based
on “how far” or “how close” they are to the computable degrees. For example,
the “simplest” noncomputable degrees are the low ones, whereas the “most com-
plicated” incomplete degrees are the high ones. It is well-known that

L1 ⊂ L2 ⊂ . . .

and
H1 ⊂ H2 ⊂ . . .

It should be noted that there are c.e. degrees which do not fall into any of these
jump classes.

3. Elementary Differences among Jump Classes

The jump classes are distinct substructures of R = (R,≤T ) viewed as a partially
ordered set. A natural question to ask is whether they are elementarily equivalent.
Recall that two structures over the same language are called elementarily equiv-
alent, if every sentence in the language true in one structure is also true in the
other. The question can be rephrased as whether one can express the differences
between jump classes by an elementary formula (in R, such a formula would only
involve the use of the partial order relation ≤T ).

An elementary difference between H1 and Hn (n > 1) can be described in
terms of what is called the plus-cupping properties.

In 1970s, Harrington [7] (see Fejer and Soare [4]) discovered a new class of
c.e. degrees:

Theorem 3.1 (Harrington Plus-Cupping Theorem) There is a nonzero
c.e. degree a such that for any c.e. degrees x,y, if 0 < x ≤ a ≤ y, then there
is a c.e. degree z < y such that x ∨ z = y.

We shall call the degree a in Theorem 3.1 a plus-cupping degree. Furthermore,
Harrington also showed that
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Theorem 3.2 There is no high plus-cupping degree.

Recently, Angsheng Li [10] proved that the highness condition cannot be re-
laxed:

Theorem 3.3 There is a high2 plus-cupping degree.

Consequently we are able to distinguish the classes H1 and Hn (n ≥ 2) by an
elementary property:

Corollary 3.4 For each natural number n > 1, the partially ordered structures
H1 and Hn are not elementarily equivalent.

Next we consider the jump class L2. The elementary difference between L2

and Ln (n ≥ 3) can be shown by nonsplitting properties, which we explain below.

We say that a degree a splits if there are degrees a0,a1 < a such that a =
a0 ∨ a1. This seemingly insignificant notion turned out to be one of the driving
forces in the development of degree theory. Until today, we are still far from
fully understanding the phenomena of splitting and nonsplitting in various degree
structures.

Two important results were established by Sacks in the 1960’s:

Theorem 3.5 (Sacks Splitting Theorem) Any nonzero c.e. degree a splits.

Theorem 3.6 (Sacks Density Theorem) Given any two c.e. degrees b < a,
there is a c.e. degree c such that b < c < a.

It is natural to ask if the two theorems above can be combined: Given any
c.e. degrees b < a, are there c.e. degrees b < a0,a1 < a such that a0 ∨ a1 = a?

Although Robinson [15] showed that it was true for a low degree b, the question
was answered negatively in general by Lachlan [9]:

Theorem 3.7 (Lachlan Nonsplitting Theorem) There exist c.e. degrees b <

a such that a is not splittable over b. In other words, for any c.e. degrees x,y, if
b < x,y < a, then x ∨ y 6= a.

It is worth mentioning that Lachlan’s result had more important impact than
merely settling a fundamental question. In the proof of Theorem 3.7, Lachlan
introduced an extremely powerful method, now categorized as 0

′′′
-priority method.

We shall refer to the pair of c.e. degrees b < a in Theorem 3.7 as a Lachlan
nonsplitting pair.
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We now return to low2 degrees. Harrington (unpublished) and independently
Bickford and Mills [1] (see Shore and Slaman [17]) showed that Lachlan nonsplit-
ting pair does not exist in L2:

Theorem 3.8 Every low2 c.e. degree bounds no Lachlan nonsplitting pair.

Shore and Slaman (see Shore and Slaman [18]) have observed that the existing
technical resources could show that the low2 was the best possible:

Theorem 3.9 There exists a Lachlan nonsplitting pair a < l such that l is low3.

By combining Theorems 3.8 and 3.9, we are able to distinguish between the
classes L2 and Ln (n ≥ 3) by some elementary property:

Corollary 3.10 For each natural number n > 2, the partially ordered structures
L2 and Ln are not elementarily equivalent.

Before we discuss the elementary equivalence issue for other jump classes, let
us take a detour to the topic on definable subsets of R. As we shall see, the two
topics are closely related. In fact, it is the study of definable ideals that leads to
the Join Theorem by Jockusch, Li and Yang, which is the key to distinguishing
the jump class L1 and Ln (n ≥ 2).

4. Definable Subsets in R

One of the central problems about R is to characterize the definable sets and rela-
tions of R. A set of degrees is called definable in R if there is a formula, involving
only the predicate ≤T , which describes the set. A long standing open problem in
computability theory is whether the structure R is rigid, that is, whether there
is a nontrivial automorphism of R. The study of definability is closely linked to
the rigidity of R, since any two degrees in R paired by an automorphism must
satisfy the same definable properties, so that the existence of a particular definable
relation may rule out certain automorphisms of R.

One of the most significant results in the past decade is the definability of
most of the jump classes. Using first order representation of standard models of
arithmetic within R, Nies, Shore and Slaman [12] have shown:

Theorem 4.1 For every n > 0, Hn and Ln+1 are definable in R.
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The glaring exception is the jump class L1. It remains open this class is
definable.

Other interesting problems in definability concern definable ideals. We say
that a set of degrees I is an ideal of R if I is closed under join and I is closed
downwards.

Perhaps the earliest known example of a definable ideal is the collection of
all noncuppable degrees. We say that a c.e. degree a is noncuppable if for any
c.e. degree x, a ∨ x = 0′ if and only if x = 0′. Let NCup denote the set of all
noncuppable degrees. It is easy to verify that NCup is an ideal. Cooper and
Yates in 1970’s showed that NCup is nontrivial:

Theorem 4.2 (Cooper and Yates) There exists a noncuppable c.e. degree
a 6= 0

Although there are a few other known definable ideals, one would like to a find
systematic way of generating infinitely many definable ideals. A natural attempt
is to make use of the definability of jump classes and produce a sequence of new
definable ideals. We offer two such attempts below. As we shall see, both attempts
fail.

Attempt one is to make use of the classes Hn, and to generalize the notion of
noncuppable degrees as follows.

Let NCupH= {a : ∀w(a ∨w ∈ H1 ⇒ w ∈ H1}.
Similarly, we can define NCupHn by replacing “H1” by “Hn”.

It follows from Theorem 4.1 that for each positive integer n, NCupHn is a
definable ideal.

The second attempt is to make use of the classes Ln. The starting point is the
notion of almost deep degrees, introduced by Cholak, Groszek and Slaman [2]: A
degree a is called an almost deep degree if

∀l ∈ L1[(a ∨ l) ∈ L1].

In other words, joining with a preserves lowness.

They showed:

Theorem 4.3 There is a nonzero almost deep degree.

Notice that the almost deep degrees form an ideal. It is not known if it is
definable as it is hinged to the definability of L1. However, one could modify the
notion to regain definability as follows.
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Let n be a positive integer. A degree a is called an almost n-deep degree if

∀l ∈ Ln[(a ∨ l) ∈ Ln].

In other words, joining with a preserves lown-ness.

Notice that for n > 1, by Theorem 4.1 again, the almost n-deep degrees do
form definable ideals. It was once believed that the method of proving Theorem
4.3 could be modified to produce a nonzero almost 2-deep degree.

However, the attempts of using NCupHn and almost n-deep degrees do not
work, as Jockusch, Li and Yang [8] have shown the following version of Join The-
orem:

Theorem 4.4 (Jockusch, A. Li and Y. Yang)

(∀a 6= 0)(∃b)[b′′ = (a ∨ b)′ = 0′′].

Equivalently, (∀a 6= 0)(∃b ∈ L2)[(a ∨ b) ∈ H1].

Corollary 4.5

(i) For each n ≥ 1, the ideal NCupHn is trivial, i.e., the zero ideal.

(ii) For each n ≥ 2, the ideal of almost n-deep degrees is trivial.

Theorem 4.4 has other interesting consequences. One motivation came from
the study of the join operator in c.e. degrees, in the spirit of Posner and Robinson
[13].

Theorem 4.6 (Posner and Robinson) In Turing degrees, for any 0 6= a ≤ 0′,
there exists b such that

b′ = a ∨ b = 0′.

However, by the existence of noncuppable degrees, we have no such join theo-
rem in R. Thus, Theorem 4.4 is the optimal result one can hope for in R.

We are now ready to return to the topic of elementary differences between L1

and Ln (n > 1). Using the fact that there exists a nonzero almost deep degree and
that there is no nonzero almost n-deep degree (for n > 1), we have the following
corollary:

Corollary 4.7 For each natural number n > 1, the partially ordered structures
L1 and Ln are not elementarily equivalent.

Finally, in 2004, Richard Shore [16] used the coding technique of [12] to settle
the elementary equivalence problem for all jump classes Ln:

Theorem 4.8 (Shore) For each natural number n > m > 1, the partially ordered
structures Ln and Lm are not elementarily equivalent.
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5. Open Problems

We end the survey paper by listing some open problems related to definability in
R.

Open Question 1 (Slaman) Is there any nontrivial definable principal ideal in
R?

Open Question 2 Are there infinitely many definable ideals in R?.

The problem on elementary equivalence among the jump classes Hn remains
open:

Open Question 3 Are there m 6= n such that Hm and Hn are elementarily
equivalent?

Until now, we have very limited knowledge of Hn and Ln+1 for n ≥ 3. This
motivates our final open problem below. The words “naturally definable” empha-
size on the simplicity of the definition, in particular, rule out the coding technique
used in [12].

Open Question 4 (i) Is there a naturally definable set A ⊂ R such that A ∩
Hn = ∅ but A ∩Hn+1 6= ∅? We assume that n ≥ 2. (For n = 1, the answer
is yes by existing results.)

(ii) Is there a naturally definable set A ⊂ R such that A∩Ln = ∅ but A∩Ln+1 6=
∅? We assume that n ≥ 3. (For n = 1, 2, the answer is yes by existing
results.)

(iii) Is there a naturally definable nonempty set A ⊂ R such that A∩Ln = ∅ and
A ∩Hn = ∅ for all n ≥ 1?
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