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Abstract

There are many famous problems on finding a regular substructure in a

sufficiently large combinatorial structure, one of them i.e. Ramsey numbers.

In this paper we list some known results and an open problem on graph

Ramsey numbers. In the special cases, we list to determine graph Ramsey

numbers for trees versus wheels.

Keywords: Ramsey number, tree, wheel

1. Introduction

Before we present about graph Ramsey numbers, we rewrite the story of classical
Ramsey numbers in [26] as follows.

”The origins of Ramsey theory are diffuse. Frank Plumton Ramsey [23] was
interested in decision procedures for logical systems. Issai Schur wanted to solve
Fermats last theorem over finite fields. B.L. van der Waerden solved an amusing
problem and immediately returned to his researches in algebraic geometry. The
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emergence of Ramsey theory as a cohesive subdiscipline of combinatorial analysis
occurred only in the last decade, see [14].

Issai Schur[25] proved the first theorem of what was later to be called Ramsey
theory in 1916. He proved that: For every r ∈ N there exists an n ∈ N such that,
given an arbitrary r−coloring of S = {1, 2, . . . , n}; there exist x, y, z ∈ S all the
same color, satisfying x + y = z. His motivation for establishing this result was
the study of Fermats Last Theorem over finite fields. In the 1920s he made the
following conjecture: If the positive integers are divided into two classes, at least
one of the classes contains an arithmetic progression of k terms, no matter how
large the given length k is. Over lunch one day in 1926, B. L. van der Waerden
told Emil Artin and Otto Schreier about this problem. Immediately after lunch
they went into Artins office in the Mathematics Department of the University of
Hamburg and tried to find a proof. They solved the question of Schurs conjecture
and it was later formally proved by Van der Waerden. Ramsey proved his famous
theorem in 1930 in the first 8 pages of a 20 page paper On a problem of formal
logic [23]. Ramseys theorem may be stated as follows: Let k, r, n be positive
integers. If N is sufficiently large and if the k−sets of an N−set are colored
arbitrarily with r colors then there exists an n−set, all of whose k element subsets
are the same color. Ramsey needed this result for his researches in Mathematical
Logic and he used this theorem to establish a result in a decision procedure for a
certain class of statements in First Order Logic. It is ironic that it was discovered
later that Ramseys theorem was not needed for constructing the required decision
procedure. This happened during the Hilbert-program, which attempted to find
a general decision procedure for statements in First Order Logic. What is even
more ironic is that Kurt Godels[19] undecidability results (which were published
the year after Ramsey died) showed that such a decision procedure could not exist.
Thus Ramsey theory is named after Frank Plumpton Ramsey because he proved
a theorem he did not need, in the course of trying to do something we now know
cannot be done! The proof of Van der Waerdens theorem made a great impression
on a young mathematician named Richard Rado. He may be considered the first
true Ramsey theoretician, since in his PhD dissertation (under the supervision
of Issai Schur) and in his subsequent work he was interested in Ramsey theory
problems per se. Ramseys theorem was rediscovered in the classic 1935 paper [11]
of Paul Erdos and George Szekeres. Erdos and Szekeres were young students in
Budapest at the time and one of their friends in Budapest, Esther Klein, discovered
that: given any 5 points in a plane, some four points form a convex quadrilateral.
They soon made a general conjecture: for any δ there exists an ε so that given ε

points in the plane, some δ form a convex set. Szekeres wrote in the foreword of
[10]:

I have no clear recollection how the generalization actually came about;
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in the paper we attributed it to Esther, but she assures me that Paul
had much more to do with it. We soon realized that a simple minded
argument would not do and there was a feeling of excitement that a
new type of geometric problem emerged from our circle which we were
only too eager to solve. For me, [the] fact that it came from Epszi
(Pauls nickname for Esther, short for epsilon) added a strong incentive
to be the first with a solution and after a few weeks I was able to
confront Paul with a triumphant E.P., open your wise mind. What I
had really found was Ramseys Theorem, from which [the above result]
easily followed. Of course, at that time none of us knew about Ramsey.

It is believed that what we now know as Ramsey theory went into a long
embryonic stage from 1930 to 1973 and that it was really born at the Combinatorial
Conference at Balatonfured, Hungary during 1973. The conference proceedings
[20] reveal that there were more than 24 talks devoted to what is now called
Ramsey theory. Among the speakers were Richard Rado, Walter Deuber, Klaus
Leeb, Ron Graham, and Paul Erdos in whose honour the conference was held.
Ramsey theory found its place as a cohesive sub-discipline of combinatorial analysis
at the Balatonfured conference and is concerned with conditions that guarantee
that a combinatorial object necessarily contains some smaller given objects. The
least number of sub-objects that guarantees the existence of some smaller objects
is called a Ramsey number. Therefore the role of Ramsey numbers is to quantify
some of the general existential theorems in Ramsey theory. The first Ramsey
number was published as a result of the 1953 Putnam competition. Leo Mozer
phoned Frank Harary from Edmonton asking for a graphical problem which would
complete the Putnam competition which he was composing. He suggested the
following problem of which the solution and commentary is given by Gleason,
Greenwood and Kelly [17] in their comprehensive review and commentary on these
collected problems and solutions:

Problem. Six points are in a general position in space (no three in a
line, no four in a plane). The fifteen line segments joining them in pairs
are drawn and then painted, some segments red, some blue. Prove that
some triangle has all its sides the same color.

Solution. Let P be any of the six points. Five of the line segments
end at P, and of these at least three, say PQ, PR and PS, must have
the same color, say blue. Then, if any one of the segments QR, RS and
SQ is blue we will have a blue triangle, and if not, QRS will be a red
triangle. Thus in any event at least one triangle has all its sides the
same color.

The above mentioned problem is a part of the famous party problem: What is
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the fewest number of people at a birthday party that will guarantee three mutual
acquaintances or three mutual strangers? The answer is 6 people. Greenwood and
Gleason first published this result (which is considered the first publication of a
non-trivial Ramsey number) in the Canadian Journal of Mathematics in 1955 [16].

This subject has grown tremendously, in particular with regard to asymptotic
bounds for various types of Ramsey numbers. The progress on evaluating the basic
numbers themselves has been very unsatisfactory for a long time.

Nextly, generalized of classical of Ramsey numbers i.e. graph Ramsey numbers,
considerable progress has been made new area Ramsey theory. In this paper, we
determine the graph Ramsey numbers especially cycle-wheel.

2. Basic concept

In this paper, all graphs are finite and simple. Let G be such a graph. We write
V (G) or V for the vertex set of G and E(G) or E for the edge set of G. The graph
G is the complement of the graph G, i.e., the graph obtained from the complete
graph K|V (G)| on |V (G)| vertices by deleting the edges of G.

The graph H = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E.
For x ∈ V and a subgraph B of G, define NB(x) = {y ∈ V (B) : xy ∈ E} and
NB [x] = NB(x) ∪ {x}. The degree dG(x) of a vertex x is |NG(x)|.

Cn be a cycle of n vertices. A tree Tn be a connected graph of n vertices
containing no a cycle as a subgraph. A walk of length n from a vertex u to a vertex
v in G is sequence of vertices (u = uo, u1, ...., un = v) such that ui−1ui ∈ E(G)
for each i. A closed walk has u0 = un. A path is walk in which all are distinct. A
Star Sn is a graph whose a center x adjacent to all other n− 1 vertices of degree
one. Wm = {x}+ Cm be a wheel with a rim V (Cm) = {x1, x2, . . . , xm} and a hub
x.

For given graphs G and H, the graph Ramsey number R(G,H) is the smallest
positive integer N such that for every graph F of order N the following holds:
either F contains G as a subgraph or the complement of F contains H as a
subgraph. If G is a complete graph Ka and H is also a complete graph Kb, we
usually write R(a, b) and be called Classical Ramsey numbers. In the following
section, we present some known result of classical Ramsey numbers and graph
Ramsey numbers.

3. Some results on classical Ramsey numbers

Some fundamental results on classical Ramsey numbers R(a, b), we will rewrite in
below.
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Lemma 3.1 For any b ≥ 2, R(1, b) = 1 and R(2, b) = b = R(b, 2).

Lemma 3.2 For any a, b ∈ N , R(a, b) = R(b, a).

Lemma 3.3 (Erdös and Szekeres[11]). For a, b ≥ 3, R(a, b) ≥ (a− 1)(b− 1) + 1
and R(a, b) ≤ R(a− 1, b) + R(a, b− 1) with strict inequality if both R(a− 1, b) and
R(a, b− 1) are even.

For small cases, we have only known nine exact value of classical Ramsey
numbers and the other only upper bound and lower bound which are difference
with Lemma 3 i.e.:

Tabel of Small Classical Ramsey numbers R(a, b)
a 3 4 5 6 7 8 9 10 11 12 13

b
3 6 9 14 18 23 28 36 43 51 59 69

40 46 52 59
4 18 25 41 61 84 115 149 191 238 291

35 49 56 69 92 97 128 133
5 49 87 143 216 316 442

43 58 80 101 121 141 157 181 205
6 165 298 495 780 1171

102 111 127 169 178 253 262 317
7 540 1031 1713 2826

205 216 232 405 416 511
8 1870 3583 6090

282 317 817

4. Some results on graph Ramsey numbers

There has been more activity and considerably more results in graph Ramsey
numbers than in classical Ramsey numbers. It would be impossible to take all even
a fraction of the results, so we will review R(G,H) just a few of the highlights.

For G and H are a path Pm and Pn, respectively, Geréncser and Gyárfas [13]
found the Ramsey in the following theorem.

Theorem 4.1 For positive integers n ≥ m ≥ 2, R(Pm, Pn) = n + bm
2 c − 1.

Faudree and Schelp [12] and Rosta [24] obtained the graph Ramsey numbers
for combination cycles and cycles in below.
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Theorem 4.2

R(Cn, Cm) =





2n− 1 for 3 ≤ m ≤ n, m odd, (n,m) 6= (3, 3).
n + m

2 − 1 for 4 ≤ m ≤ n, m even and n even, (n,m) 6= (4, 4).
max{n + m

2 − 1, 2m− 1} for 4 ≤ m < n, m even and n odd.

Chvátal and Harary [7] found the result by concept of chromatic number and
the largest of component in the following theorem.

Theorem 4.3 R(G, H) ≥ (χ(G)− 1)(s(H)− 1) + 1, where s(H) is the number of
vertices of the largest component of H and χ(G) is the chromatic number of G.

For combination of a complete graph Km and a tree Tn Chvátal[8] obtained
the result:

Theorem 4.4 For integer m, n ≥ 1, R(Km, Tn) = (m− 1)(n− 1) + 1.

Bondy and Erdos got the graph Ramsey numbers for combinations a complete
graph Km and a cycle Cn:

Theorem 4.5 If m ≥ 3 and n ≥ m2 − 2, then R(Km, Cn) = (m− 1)(n− 1) + 1.

Since 1976, It was conjecture that R(Km, Cn) = (m − 1)(n − 1) + 1 for m ≥
n ≥ 3, except m = n = 3. For more information, see nice survey small Ramsey
numbers in [21].

5. Some known results on tree-wheel

For combination of tree and wheel, several results have been obtained for wheels.
For instance, Surahmat and E.T. Baskoro[27, 1] obtained the Ramsey numbers of
Path Pn versus wheels Wm as follows:

Theorem 5.1 R(Pn,Wm) = 2n − 1 if m = 4 and n ≥ 4 or m ≥ 6 is even and
n ≥ m

2 (m− 1) + 1.

For combination a star and a wheel, see in [27] and [28], we obtained:

Theorem 5.2 R(Sn,W4) = 2n− 1 if n ≥ 3 odd or R(Sn, W4) = 2n + 1 if n ≥ 4
even.
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Theorem 5.3 For all n ≥ 2m− 4, m ≥ 5 and m odd, R(Sn,Wm) = 3n− 2

To Determine of the Ramsey Graph numbers of any tree Tn 6= Sn versus Wm

for n ≥ m− 1, we have information from [2] as below:

Theorem 5.4 Let n ≥ 4 and assume that we are given a particular tree Tn of n

vertices other than a star. Then the Ramsey number R(Tn,W4) = 2n− 1.

Theorem 5.5 Let n ≥ 3 and assume that we are given a particular tree Tn of n

vertices other than a star. Then the Ramsey number R(Tn,W5) = 3n− 2.

6. Open Problem

In this section we shall give in the following an open problem:

Determine the Ramsey numbers of Tress versus Wheels in general?
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Budapest Eötvös Sect. Math 10 (1967) 167-170.

[14] R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey Theory, John Wi-
ley and Sons, New York, (1990).

[15] J.E. Graver and J. Yackel, Some Graph Theoretic Results Associated with
Ramseys Theorem, Journal of Combinatorial Theory, 4 (1968), 125175.

[16] A.M. Gleason and R.E. Greenwood, Combinatorial Relations and Chromatic
Graphs, Canadian Journal of Mathematics, 7 (1955), 17.

[17] A.M. Gleason, R.E. Greenwood and L.M. Kelly, The Putnam Mathemati-
cal Competition, Problems and solutions: 19381964, Math. Assoc. Amer.,
Washington, (1980), 365366.

[18] U. Grenda and H. Harborth, The Ramsey number r(K3;K7 − e), Journal
of Combinatorics, Information−System Sciences, 7 (1982), 166-169.

[19] K. Godel, Uber formal unentscheidbare Satze der Principia Mathemat-
ica und verwander Systeme I, Monatshefte fur Mathematic und Physik, 38
(1931), 173198.

[20] (A. Hajnal, R. Rado and V.T. Sos eds.), Infinite and finite Sets, North
Holland, New York, (1975).

[21] S. P. Radziszowski, Small Ramsey numbers, Electronic J. of Combinatorics
(2004) DS1.8.

[22] S. P. Radziszowski and J. Xia, Paths, cycles and wheels without antitriangles,
Australasian J. of Combinatorics 9 (1994) 221-232.

[23] F.P. Ramsey, On a problem of formal logic,Proc. London Math. Soc. 30
(1930) 264-286.



Surahmat 69

[24] V. Rosta, On a Ramsey type problem of J.A. Bondy and P. Erdős, I & II,
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