
 
Limits: Journal of Mathematics and Its Applications 
E-ISSN: 2579-8936 
P-ISSN: 1829-605X 
Vol. 18, No. 1, Mei 2021, 37-44 
DOI: http://dx.doi.org/10.12962/limits.v18i1.8291 

 

The half-Space Model Problem for Compressible Fluid Flow 
 

Sri Maryani 1 *, Lukman B Nugroho 2 , Agus Sugandha 3 , Bambang H Guswanto4 

1,2,3,4Departement of Matematika Jenderal Soedirman University, Indonesia 
e-mail:sri.maryani@unsoed.ac.id 

 
Diajukan: 30 Desember 2020,  Diperbaiki: 31 Maret 2021, Diterima: 21 April 2021 

 
Abstract 

In this paper we consider the solution formula for Stokes equation system without surface tension in 
half-space.  More precisely, we deal with the solution of velocity and density for the model problem. This 
result is the basic step to estimate the solution operator of the model problem. We investigate the solution 
operator for the model problem in N-Dimensional Euclidean space (ℕ ≥ 2)  
Keywords: Stokes equation, half-space, N-Dimensional Euclidean space, surface tension.  

 

1 Introduction  
Fluid and  flows are pervading our daily lifes without our conscious perception. For 

examples the air we breathe, the shower in the bathroom with the shampoo, coffee or tea, the blood 

in our vascular tree including the heart and the brain, the ingredients of food like mayonnaise, oil, 

vinegar, yogurt, etc. The design and the engineering of new material like polymers, plastics, 

ceramics, foam, etc have produced complex fluids because the material processing based on 

extrusion, molding, blowing etc., is using them in the fluid state. 

Studying about fluid motion is very interesting point in fluid dynamics. Recently, there has 

been increasing amount of literature on fluid flow. Many researchers investigated about this 

material. However, many of them conducted in numerical analysis and rarely of them investigated 

fluid motion in the mathematical analysis approach. In fluid mechanics, the flow of incompressible 

fluid which is described as Navier-Stokes equation (NSE). Meanwhile, in mathematics, NSE can 

be written in the partial differential equations. NSE is firstly introduced by Swiss mathematician 

Leonhard Euler in 18th century. He investigated the flow of the incompressible and frictionless 

fluids. The linearize of the NSE we known as Stokes equations.  

Historically, as far as we know that the Stokes flow is the linearized form of the Navier-

Stokes equations in the limit of small Reynold number. Stokes' formula is the basis method to 

measure the unit charge. The pioneer using this formula is Millikan to measure the charge on the 

electron [1]. In these experiments fine droplets produced by an oil spray were placed in the space 
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between horizontal plates forming a plane capacitor. The droplets have a charge owing to 

electrification in the spraying process or absorption of ions from the air. By observing under a 

microscope the rate of fall of a droplet by the effect of its weight alone, we can use Stokes' formula 

to calculate the radius and hence the mass of the drop (whose density is known). Then, by applying 

a suitable potential difference across the capacitor, we can bring the droplet to rest, the downward 

force of gravity being balanced by the upward electrical force on the charged droplet. Knowing 

the weight of the droplet and the electric field strength, we can calculate the charge on the droplet. 

Such measurements show that the charge on the droplets is always an integral multiple of a certain 

quantity, which is evidently the unit charge. 

Several recent studies investigating this model problem have been carried out not only on to 

find the solution formula but also to estimate the operator solution families of the model problem. 

In 2015 Murata [2] has been investigated the Stokes equation with slip boundary condition. She 

investigated not only the local well-posedness of the model problem, but also global well-

posedness. The regularity of the model problem approached using the ℛ-boundedness of the 

solution operator.  

Afterward, Maryani [3] concerned to study the compressible fluid motion for the Oldroyd-

B Model. She investigated the local well-posedness of the non-Newtonian compressible barotropic 

flow in the maximal 𝐿𝐿𝑝𝑝 − 𝐿𝐿𝑞𝑞 regularity class in bounded and unbounded domain. Meanwhile, 

Maryani and Saito [4] studied the ℛ-boundedness of the solution operator families for two phase 

problem of Stokes equation in half-space. On 2020 Inna et.al [5] considered the half-space model 

problem for the compressible fluid motion of the Korteweg type.   

In this paper we consider the solution formula of the Stokes equation in half-space without 

surface tension using Fourier transform. As we know that the Stokes formula is usually used to 

determine the viscosity of a liquid or gas from a measurement of the rate of fall of a solid sphere 

in it . The viscosity may also be assigned by means of Poiseuille's formula, by measuring the rate 

of outflow of a liquid from a pipe along which it is impelled by a given pressure difference. 

To introduce our main result, first of all we introduce the notation. For a scalar-valued 

function 𝑣𝑣 = 𝑣𝑣(𝑥𝑥) and vector-valued function 𝐯𝐯 = 𝐯𝐯(x) = 〈v1(x), … , vN(x)〉T, we set for ∂k =
∂
∂xk

 , (k = 1,⋯ , N) 

∇u = (∂1u, … , ∂Nu)T,      Δu = ∑k=1
N ∂k2u,     Δ𝐯𝐯 = 〈Δv1, … ,ΔvN〉T, 

div v = ∑k=1
N ∂kvk,     ∇𝐯𝐯 = { ∂kvℓ ∣∣ k, ℓ = 1,2,3, … , N },   ∇2𝐯𝐯 

= { ∂k ∂ℓvm ∣∣ k, ℓ, m = 1, 2, 3, … , N }. 

The set of all natural number is denoted by ℕ and ℕ0 = ℕ ∪ {0}. Let ℱ𝑥𝑥 = ℱ and ℱ𝜉𝜉−1 =
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ℱ−1 denote the Fourier transform and the Fourier inverse transform, which defined by 

ℱ𝑥𝑥[𝑓𝑓](𝜉𝜉) = ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖⋅𝜉𝜉ℝ𝑁𝑁 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑,    ℱ𝜉𝜉−1[𝑔𝑔](𝑥𝑥) = 1
(2𝜋𝜋)𝑁𝑁 ∫ 𝑒𝑒𝑖𝑖𝑖𝑖⋅𝜉𝜉𝑔𝑔(𝜉𝜉)𝑑𝑑𝑑𝑑ℝ𝑁𝑁 , 

respectively. We also write  𝑓𝑓(𝜉𝜉) = ℱ𝑥𝑥[𝑓𝑓](𝜉𝜉) . Let ℒ and ℒ−1the denote the Laplace transform and 

the Laplace inverse transform, which defined by 

ℒ[𝑓𝑓](𝜆𝜆) = ∫ 𝑒𝑒−𝜆𝜆𝜆𝜆∞
−∞ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑 = ℱ𝑡𝑡[𝑒𝑒−𝛾𝛾𝛾𝛾𝑓𝑓(𝑡𝑡)](𝜏𝜏), 

ℒ−1[𝑔𝑔](𝑡𝑡) =
1

2𝜋𝜋
� 𝑒𝑒𝜆𝜆𝜆𝜆
∞

−∞

𝑔𝑔(𝜏𝜏) 𝑑𝑑𝑑𝑑 = 𝑒𝑒𝛾𝛾𝛾𝛾ℱ𝑡𝑡−1[𝑔𝑔(𝜏𝜏)](𝑡𝑡), 

with 𝜆𝜆 = 𝛾𝛾 + 𝑖𝑖 𝜏𝜏 ∈ ℂ, respectively. 

 

2 Literature Review 
Let 𝐮𝐮 and  𝜌𝜌 be the velocity and density field, respectively. We consider the Stokes equation 

system without surface tension in bounded domain in half-space. We define ℝ+
𝑁𝑁 and ℝ0

𝑁𝑁 (ℕ ≥ 2) 

be the half-space and its boundary, respectively by 

        ℝ+
𝑁𝑁 = {𝐱𝐱 = (x1, x2, … , x3) ∈ ℝN ∣ x𝑁𝑁 > 0}, and 

ℝ0
𝑁𝑁 = {𝐱𝐱 = (x1, x2, … , x3) ∈ ℝN ∣ x𝑁𝑁 = 0}.                                  (1) 

The resolvent problem of Stokes equations are being described by the set of equations,  

�
𝜆𝜆𝜆𝜆 + γdiv 𝐮𝐮 =  𝑓𝑓       in    ℝ+

𝑁𝑁     

  
λ𝐮𝐮 − Div 𝐒𝐒(𝐮𝐮, ρ) = 𝐠𝐠   in   ℝ+

𝑁𝑁

𝐒𝐒(𝐮𝐮, ρ)𝐧𝐧 = h                 on  ℝ0
𝑁𝑁   ,

                                                   (2) 

where 𝑓𝑓, 𝐠𝐠 and h are scalar vector and 𝐒𝐒(𝐮𝐮, ρ) is the stress tensor which is defined by  

𝐒𝐒(𝐮𝐮, ρ) = 2𝛼𝛼𝐃𝐃(𝐮𝐮) + (𝛽𝛽div𝐮𝐮 − γ𝜌𝜌)𝐈𝐈,                                                    (3) 

and 𝐧𝐧 = (0,0, … ,−1) stands for the unit outer normal to ℝ+
𝑁𝑁.  The doubled deformation 𝐃𝐃(𝐮𝐮) 

tensor whose (𝑖𝑖, 𝑗𝑗) components are 𝐃𝐃𝒊𝒊𝒊𝒊(𝐮𝐮) = ∂i𝑢𝑢𝑗𝑗 + 𝜕𝜕𝑗𝑗𝑢𝑢𝑖𝑖  (𝜕𝜕𝑖𝑖 = 𝜕𝜕/𝜕𝜕𝑥𝑥𝑖𝑖), 𝐈𝐈 the 𝑁𝑁 × 𝑁𝑁 identity 

matrix, 𝛼𝛼,𝛽𝛽 and 𝛾𝛾 are positive constants and also div 𝐮𝐮 = ∑ 𝜕𝜕𝑗𝑗𝑢𝑢𝑗𝑗𝑁𝑁
𝑗𝑗=1 . 

Before we state the main result, first of all we introduce the definition of sobolev space 

𝑊𝑊𝑝𝑝
𝑚𝑚(Ω) is defined by  

𝑊𝑊𝑝𝑝
𝑘𝑘,𝑚𝑚(Ω) = {(𝜌𝜌,𝐮𝐮) ∣ 𝜌𝜌 ∈ 𝑊𝑊𝑝𝑝

𝑘𝑘(Ω),𝐮𝐮 ∈ 𝑊𝑊𝑝𝑝
𝑚𝑚(Ω)}.  

Definition 1 (Adams and Fournier, [6])  

Let k ∈ ℕ ∪ {0} and p ∈ [1,∞) then the Sobolev Space Wq
m(Ω) is defined by  

Wq
m(Ω) ≔ �𝐮𝐮 ∈ Lq(Ω) ∣∣ Dα𝐮𝐮 ∈ Lq(Ω),∀ α with |α| ≤ m �. 

Furthermore, we state the main theorem of this paper 

Theorem 2. Let 𝑁𝑁 < 𝑞𝑞 < ∞, 2 < 𝑝𝑝 < ∞ then there exists Lopatinski matrix 𝐿𝐿 i.e  



40  
 

The half-Space Model Problem for Compressible Fluid Flow 

𝐿𝐿 = �𝐿𝐿11 𝐿𝐿12
𝐿𝐿21 𝐿𝐿22

� 

with  

𝐿𝐿11 = 𝛼𝛼𝛼𝛼 − (𝛼𝛼 + |𝜉𝜉′|)𝐴𝐴,  𝐿𝐿12 = 2𝐴𝐴𝐴𝐴(𝛼𝛼 + |𝜉𝜉′|2) + |𝜉𝜉′| 

𝐿𝐿21 = − (2𝛼𝛼+𝛽𝛽+𝛿𝛿)𝐴𝐴2+2(𝛽𝛽+𝛿𝛿)�𝜉𝜉′�
2

|𝜉𝜉′|2
, 𝐿𝐿22 = (2𝛼𝛼+𝛽𝛽+𝛿𝛿)(2𝐴𝐴2𝐵𝐵+𝐵𝐵�𝜉𝜉′�

2
)−2(𝛽𝛽+𝛿𝛿)𝐵𝐵�𝜉𝜉′�

2

|𝜉𝜉′|2
, 

and  

det 𝐿𝐿 = 𝐿𝐿11𝐿𝐿22 − 𝐿𝐿12𝐿𝐿21. 

Then problem (2) admits a unique solution formula of (𝜌𝜌,𝐮𝐮) ∈ 𝑊𝑊𝑝𝑝
1,2(Ω) with  

𝑢𝑢�𝑗𝑗(𝜉𝜉′, 𝑥𝑥𝑁𝑁) = �
𝜂𝜂(𝑖𝑖𝜉𝜉𝑗𝑗)(𝑖𝑖𝜉𝜉𝑘𝑘)(𝐿𝐿22 + 2𝐵𝐵𝐿𝐿21)

𝐵𝐵(𝐵𝐵 + 𝐴𝐴) det 𝐿𝐿

𝑁𝑁−1

𝑘𝑘=1

⋅
|𝜉𝜉′|2 + 𝐴𝐴

|𝜉𝜉′|2
�
−𝐵𝐵𝑒𝑒−𝐴𝐴𝑥𝑥𝑁𝑁 + 2𝐴𝐴𝑒𝑒−𝐵𝐵𝑥𝑥𝑁𝑁

(𝐵𝐵 − 𝐴𝐴)
�ℎ𝑘𝑘�(𝜉𝜉′, 0) 

         +
𝜂𝜂(𝑖𝑖𝜉𝜉𝑗𝑗)(𝐿𝐿12 + 2𝐵𝐵𝐿𝐿11)
𝐵𝐵(𝐵𝐵 + 𝐴𝐴) det 𝐿𝐿

⋅
|𝜉𝜉′|2 + 𝐴𝐴

|𝜉𝜉′|2
�
𝐵𝐵𝑒𝑒−𝐴𝐴𝑥𝑥𝑁𝑁 − 2𝐴𝐴𝑒𝑒−𝐵𝐵𝑥𝑥𝑁𝑁

(𝐵𝐵 − 𝐴𝐴)
�ℎ𝑁𝑁�(𝜉𝜉′, 0) 

         −�
�𝑖𝑖𝜉𝜉𝑗𝑗�(𝑖𝑖𝜉𝜉𝑘𝑘)𝐿𝐿21

det 𝐿𝐿

𝑁𝑁−1

𝑘𝑘=1

𝑒𝑒−𝐵𝐵𝑥𝑥𝑁𝑁ℎ𝑘𝑘�(𝜉𝜉′, 0) +  
�𝑖𝑖𝜉𝜉𝑗𝑗�𝐿𝐿11

det 𝐿𝐿
𝑒𝑒−𝐵𝐵𝑥𝑥𝑁𝑁ℎ𝑁𝑁�(𝜉𝜉′, 0) 

+ 1
𝛼𝛼𝛼𝛼
𝑒𝑒−𝐵𝐵𝑥𝑥𝑁𝑁ℎ𝑘𝑘�(𝜉𝜉′, 0)                                                                                                        (4) 

for 𝑗𝑗 = 1, … ,𝑁𝑁 − 1 and  

𝑢𝑢�𝑁𝑁(𝜉𝜉′, 𝑥𝑥𝑁𝑁) = �
(𝑖𝑖𝜉𝜉𝑘𝑘)
det 𝐿𝐿

𝑁𝑁−1

𝑘𝑘=1

⋅ �
𝜂𝜂(𝐿𝐿22 + 2𝐵𝐵𝐿𝐿21)𝐴𝐴

(𝐵𝐵2 − 𝐴𝐴2)
⋅

|𝜉𝜉′|2 + 𝐴𝐴
|𝜉𝜉′|2

𝑒𝑒−𝐴𝐴𝑥𝑥𝑁𝑁 − 𝐿𝐿21𝑒𝑒−𝐵𝐵𝑥𝑥𝑁𝑁� ℎ𝑘𝑘�(𝜉𝜉′, 0) 

                −  
1

det 𝐿𝐿
�
𝜂𝜂𝜂𝜂(𝐿𝐿12 + 2𝐵𝐵𝐿𝐿11)

(𝐵𝐵2 − 𝐴𝐴2)
⋅

|𝜉𝜉′|2 + 𝐴𝐴
|𝜉𝜉′|2

𝑒𝑒−𝐴𝐴𝑥𝑥𝑁𝑁 − 𝐿𝐿11𝑒𝑒−𝐵𝐵𝑥𝑥𝑁𝑁� ℎ𝑁𝑁�(𝜉𝜉′, 0) 

with  𝐴𝐴2 = |𝜉𝜉′|2 +  𝛼𝛼−1 𝜆𝜆 , 𝐵𝐵2 = |𝜉𝜉′|2 +  (2𝛼𝛼 + 𝛽𝛽 + 𝛿𝛿)−1 𝜆𝜆 and  𝛿𝛿 = 𝛾𝛾2𝜆𝜆−1. 

 

3 Research Methodology 

In this research methodology, we use literature review of the related articles, especially [7].  

In this paper, we put the different approach of the general solution of velocity as in [7]. This 

research focus on considering the solution formula of the compressible Stokes equation system (2) 

without surface tension by using Fourier transform. First of all we construct the compressible 

Stokes equation without surface tension in half-space case. Then, by applying the Fourier 

transformation to model problem, we get new equation system. Finally, the solution formula of 

the model problem are furnished. 
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4 Research and Discussion 

Reduce System 

In this section, we formulated the model problem (2) and state our main result. Let ℝ+
𝑁𝑁 and 

ℝ0
𝑁𝑁 as defined in (1). We consider for 𝜆𝜆 ≠ 0, inserting 𝜌𝜌 = 𝜆𝜆−1(𝑓𝑓 − 𝛾𝛾div 𝐮𝐮) to the second and 

third equation of (2), then we have  

�

     

  
λ𝐮𝐮 − αΔ𝐮𝐮 − (α + β + δ)∇div 𝐮𝐮 = 𝐅𝐅  in   ℝ+

𝑁𝑁

α�∂juN + ∂Nuj� = −hj                           on  ℝ0
𝑁𝑁

2𝛼𝛼 ∂NuN + (𝛽𝛽 + 𝛿𝛿)div𝐮𝐮 =  −hN         on ℝ0
𝑁𝑁

  ,                            (5) 

for 𝑗𝑗 = 1, … ,𝑁𝑁 − 1 and 𝐅𝐅 = 𝐠𝐠 − λ−1𝛾𝛾∇𝑓𝑓. 

Moreover, we derive a solution formula of (5). For this purpose, applying the partial Fourier 

transform to (5) i.e  

𝑢𝑢� = 𝑢𝑢�(𝑥𝑥𝑁𝑁) = 𝑢𝑢�(𝜉𝜉′, 𝑥𝑥𝑁𝑁) = � 𝑒𝑒−𝑖𝑖𝑖𝑖′⋅𝜉𝜉′

ℝ𝑁𝑁−1

𝑢𝑢(𝑥𝑥′, 𝑥𝑥𝑁𝑁) 𝑑𝑑𝑑𝑑′ 

ℱ𝜉𝜉−1[𝑢𝑢�(𝜉𝜉′, 𝑥𝑥𝑁𝑁)](𝑥𝑥′) =
1

(2𝜋𝜋)𝑁𝑁−1 � 𝑒𝑒𝑖𝑖𝑖𝑖′⋅𝜉𝜉′𝑢𝑢�(𝜉𝜉′, 𝑥𝑥𝑁𝑁)𝑑𝑑𝑑𝑑′
ℝ𝑁𝑁−1

, 

where 𝜉𝜉′ = (𝜉𝜉1, … , 𝜉𝜉𝑁𝑁−1 ) ∈ ℝ𝑁𝑁−1, we have  

⎩
⎪
⎨

⎪
⎧

     

  

𝛼𝛼(𝛼𝛼−1𝜆𝜆 + |𝜉𝜉′|2)𝑢𝑢�𝑗𝑗 − 𝛼𝛼𝜕𝜕𝑁𝑁2𝑢𝑢�𝑗𝑗 + (𝛼𝛼 + 𝛽𝛽 + 𝛿𝛿)𝑖𝑖𝜉𝜉𝑗𝑗(𝑖𝑖𝜉𝜉′ ⋅ 𝑢𝑢�′ + 𝜕𝜕𝑁𝑁𝑢𝑢�𝑁𝑁) = 0  (𝑥𝑥𝑁𝑁 > 0)
𝛼𝛼(𝛼𝛼−1𝜆𝜆 + |𝜉𝜉′|2)𝑢𝑢�𝑁𝑁 − 𝛼𝛼𝜕𝜕𝑁𝑁2𝑢𝑢�𝑁𝑁 + (𝛼𝛼 + 𝛽𝛽 + 𝛿𝛿)𝜕𝜕𝑁𝑁(𝑖𝑖𝜉𝜉′ ⋅ 𝑢𝑢�′ + 𝜕𝜕𝑁𝑁𝑢𝑢�𝑁𝑁) = 0  (𝑥𝑥𝑁𝑁 > 0)

𝛼𝛼�𝑖𝑖𝜉𝜉𝑗𝑗𝑢𝑢�𝑁𝑁 + 𝜕𝜕𝑁𝑁𝑢𝑢�𝑁𝑁� ∣𝑥𝑥𝑁𝑁=0= −ℎ𝚥𝚥� (𝜉𝜉′, 0)                                                             

2𝛼𝛼𝜕𝜕𝑁𝑁𝑢𝑢𝑁𝑁 + (𝛽𝛽 + 𝛿𝛿)(𝑖𝑖𝜉𝜉′ ⋅ 𝑢𝑢�′ + 𝜕𝜕𝑁𝑁𝑢𝑢�𝑁𝑁) ∣𝑥𝑥𝑁𝑁=0=  −ℎ𝑁𝑁�(𝜉𝜉′, 0)                        

  ,        (6) 

for 𝑗𝑗 = 1, … ,𝑁𝑁 − 1 and  𝑖𝑖𝜉𝜉′ ⋅ 𝑢𝑢�′ = ∑ 𝑖𝑖𝜉𝜉𝑘𝑘𝑢𝑢𝑘𝑘𝑁𝑁−1
𝑘𝑘=1 . 

Let 𝐮𝐮� = (𝑢𝑢�1, … ,𝑢𝑢�𝑁𝑁) have general formula in the following 

𝑢𝑢�ℓ = 𝑃𝑃ℓ𝑒𝑒−𝐴𝐴𝑥𝑥𝑁𝑁 + 𝑄𝑄ℓ𝑒𝑒−𝐵𝐵𝑥𝑥𝑁𝑁,                                               (7) 

then we get 

𝜕𝜕𝑁𝑁𝑢𝑢�𝑁𝑁 = −𝐴𝐴𝑃𝑃𝑁𝑁𝑒𝑒−𝐴𝐴𝑥𝑥𝑁𝑁 − 𝐵𝐵𝑃𝑃𝑁𝑁𝑒𝑒−𝐵𝐵𝑥𝑥𝑁𝑁,                                          (8) 

𝜕𝜕𝑁𝑁2𝑢𝑢�𝑁𝑁 = 𝐴𝐴2𝑃𝑃𝑁𝑁𝑒𝑒−𝐴𝐴𝑥𝑥𝑁𝑁+𝐵𝐵2𝑃𝑃𝑁𝑁𝑒𝑒−𝐵𝐵𝑥𝑥𝑁𝑁,                                          (9) 

   𝑖𝑖𝜉𝜉′ ⋅ 𝑢𝑢�′ = ∑ 𝑖𝑖𝜉𝜉𝑗𝑗𝑁𝑁−1
𝑘𝑘=1 (𝑃𝑃𝑗𝑗𝑒𝑒−𝐴𝐴𝑥𝑥𝑁𝑁 + 𝑄𝑄𝑗𝑗𝑒𝑒−𝐵𝐵𝑥𝑥𝑁𝑁).                                 (10) 

Applying div to first equation of (5) we have  

(λ − (2α + β + δ)Δ)div 𝐮𝐮 = 0.                                               (11) 

Multiplying (5) by  (λ − (2α + β + δ)Δ) then using (11), we have  

(λ − αΔ)(λ − (2α + β + δ)Δ)𝐮𝐮 = 0.                                              (12) 
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Applying Fourier transform to (12), we have formula  

   𝐴𝐴2 = |𝜉𝜉′|2 + (2𝛼𝛼 + 𝛽𝛽 + 𝛿𝛿)−1 𝜆𝜆  and 𝐵𝐵2 = |𝜉𝜉′|2 +  𝛼𝛼−1 𝜆𝜆.                 (13) 

Substituting (7) , (8), (9) and (10) to equation system of (6) and equating the coefficients of 

𝑒𝑒−𝐴𝐴𝑥𝑥𝑁𝑁 and 𝑒𝑒−𝐵𝐵𝑥𝑥𝑁𝑁, we have new equation system 

⎩
⎪
⎨

⎪
⎧

     

  

𝛼𝛼(𝐵𝐵2 − 𝐴𝐴2)𝑃𝑃𝑗𝑗 − (𝛼𝛼 + 𝛽𝛽 + 𝛿𝛿)𝑖𝑖𝜉𝜉𝑗𝑗(𝑖𝑖𝜉𝜉′ ⋅ 𝑃𝑃′ − 𝐴𝐴𝑃𝑃𝑁𝑁) = 0  
𝛼𝛼(𝐵𝐵2 − 𝐴𝐴2)𝑃𝑃𝑁𝑁 + (𝛼𝛼 + 𝛽𝛽 + 𝛿𝛿)𝐴𝐴(𝑖𝑖𝜉𝜉′ ⋅ 𝑃𝑃′ − 𝐴𝐴𝑃𝑃𝑁𝑁) = 0 
𝑖𝑖𝜉𝜉′ ⋅ 𝑃𝑃′ + 𝑖𝑖𝜉𝜉′ ⋅ 𝑄𝑄′ − 2𝐵𝐵𝑄𝑄𝑁𝑁 = 0                              

𝛼𝛼�𝐴𝐴𝑃𝑃𝑗𝑗 + 𝐵𝐵𝑄𝑄𝑗𝑗 − 𝑖𝑖𝜉𝜉𝑗𝑗(𝑃𝑃𝑁𝑁 + 𝑄𝑄𝑁𝑁)� =  ℎ𝚥𝚥� (𝜉𝜉′, 0)                  
(2𝛼𝛼 + 𝛽𝛽 + 𝛿𝛿)(𝐴𝐴𝑃𝑃𝑁𝑁 + 𝐵𝐵𝑄𝑄𝑁𝑁) − (𝛽𝛽 + 𝛿𝛿)(𝑖𝑖𝜉𝜉′ ⋅ 𝑃𝑃′ + 𝑖𝑖𝜉𝜉′ ⋅ 𝑄𝑄′) = ℎ𝑁𝑁�(𝜉𝜉′, 0).

           (14) 

Let (𝑖𝑖𝜉𝜉′ ⋅ 𝑃𝑃′ − 𝐴𝐴𝑃𝑃𝑁𝑁) = 𝐾𝐾, so that from first and second equation of (14), we have the formula of  

𝑃𝑃𝑗𝑗 and  𝑃𝑃𝑁𝑁 

𝑃𝑃𝑗𝑗 =
(𝛼𝛼+𝛽𝛽+𝛿𝛿)𝑖𝑖𝜉𝜉𝑗𝑗
𝛼𝛼(𝐵𝐵2−𝐴𝐴2) 𝐾𝐾 and 𝑃𝑃𝑁𝑁 = − (𝛼𝛼+𝛽𝛽+𝛿𝛿)𝐴𝐴

𝛼𝛼(𝐵𝐵2−𝐴𝐴2) 𝐾𝐾,                                              (15) 

respectively. 

Therefore, we have the new solution formula of 𝐾𝐾, 

𝐾𝐾 = 𝛼𝛼�𝐵𝐵2−𝐴𝐴2�
(𝛼𝛼+𝛽𝛽+𝛿𝛿)|𝜉𝜉|2

(𝑖𝑖𝜉𝜉′ ⋅ 𝑄𝑄′ − 2𝐵𝐵𝑄𝑄𝑁𝑁).                                                    (16) 

By using equation (16), we can find the new formula of  𝑃𝑃𝑗𝑗 and  𝑃𝑃𝑁𝑁 

𝑃𝑃𝑗𝑗 = 𝑖𝑖𝜉𝜉𝑗𝑗
|𝜉𝜉′|2

(𝑖𝑖𝜉𝜉′ ⋅ 𝑄𝑄′ − 2𝐵𝐵𝑄𝑄𝑁𝑁) and 𝑃𝑃𝑁𝑁 = − 𝐴𝐴
|𝜉𝜉′|2

(𝑖𝑖𝜉𝜉′ ⋅ 𝑄𝑄′ − 2𝐵𝐵𝑄𝑄𝑁𝑁),                             (17)                                              

respectively. Multiplying both side of the fourth equation of (14) by ∑ 𝑖𝑖𝜉𝜉𝑗𝑗𝑁𝑁−1
𝑗𝑗=1 , we have 

𝛼𝛼 �𝐴𝐴� 𝑖𝑖𝜉𝜉𝑗𝑗

𝑁𝑁−1

𝑗𝑗=1

𝑃𝑃𝑗𝑗 + 𝐵𝐵� 𝑖𝑖𝜉𝜉𝑗𝑗

𝑁𝑁−1

𝑗𝑗=1

𝑄𝑄𝑗𝑗 − � 𝑖𝑖𝜉𝜉𝑗𝑗

𝑁𝑁−1

𝑗𝑗=1

𝑖𝑖𝜉𝜉𝑗𝑗(𝑃𝑃𝑁𝑁 + 𝑄𝑄𝑁𝑁)� =  �𝑖𝑖𝜉𝜉𝑗𝑗

𝑁𝑁−1

𝑗𝑗=1

ℎ𝚥𝚥� (𝜉𝜉′, 0) 

𝛼𝛼(𝐴𝐴𝐴𝐴𝜉𝜉′ ⋅ 𝑃𝑃′ + 𝐵𝐵𝐵𝐵𝜉𝜉′ ⋅ 𝑄𝑄′ − |𝜉𝜉|2(𝑃𝑃𝑁𝑁 + 𝑄𝑄𝑁𝑁)) =  𝑖𝑖𝜉𝜉′ ⋅ ℎ′� (𝜉𝜉′, 0).                              (18) 

Combining equation (18) with last equation of (14) and (17), we have a linear system 

𝐿𝐿 �𝑖𝑖𝜉𝜉
′ ⋅ 𝑄𝑄′
𝑄𝑄𝑁𝑁

� = �𝑖𝑖𝜉𝜉
′ ⋅ ℎ′� (𝜉𝜉′, 0)
ℎ𝑁𝑁�(𝜉𝜉′, 0)

�,                                             (19) 

with  𝐿𝐿 adalah 2 × 2 of Matrix Lopatinski with entries are  

𝐿𝐿11 = 𝛼𝛼𝛼𝛼 − (𝛼𝛼 + |𝜉𝜉′|)𝐴𝐴,  𝐿𝐿12 = 2𝐴𝐴𝐴𝐴(𝛼𝛼 + |𝜉𝜉′|2) + |𝜉𝜉′| 

𝐿𝐿21 = − (2𝛼𝛼+𝛽𝛽+𝛿𝛿)𝐴𝐴2+2(𝛽𝛽+𝛿𝛿)�𝜉𝜉′�
2

|𝜉𝜉′|2
, 𝐿𝐿22 = (2𝛼𝛼+𝛽𝛽+𝛿𝛿)(2𝐴𝐴2𝐵𝐵+𝐵𝐵�𝜉𝜉′�

2
)−2(𝛽𝛽+𝛿𝛿)𝐵𝐵�𝜉𝜉′�

2

|𝜉𝜉′|2
.                (20) 

By using Cramer’s rule, from (19), we obtain the formula of 𝑖𝑖𝜉𝜉′ ⋅ 𝑄𝑄′ and 𝑄𝑄𝑁𝑁, 

𝑖𝑖𝜉𝜉′ ⋅ 𝑄𝑄′ =
𝐿𝐿22𝑖𝑖𝜉𝜉′ ⋅ ℎ�(𝜉𝜉′, 0) − 𝐿𝐿12ℎ𝑁𝑁�(𝜉𝜉′, 0)

det 𝐿𝐿
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and  

𝑄𝑄𝑁𝑁 = 𝐿𝐿11ℎ𝑁𝑁� �𝜉𝜉′,0�−𝐿𝐿21𝑖𝑖𝜉𝜉′⋅ℎ��𝜉𝜉′,0�
det 𝐿𝐿

, 

respectively, with  

det 𝐿𝐿 = 𝐿𝐿11𝐿𝐿22 − 𝐿𝐿12𝐿𝐿21, 

 

formula 𝐿𝐿11, 𝐿𝐿12, 𝐿𝐿21 and 𝐿𝐿22 as in (20). Moreover, we have  

𝑃𝑃𝑗𝑗 = −
𝜂𝜂�𝑖𝑖𝜉𝜉𝑗𝑗���𝜉𝜉′�

2
+𝐴𝐴�

(𝐵𝐵2−𝐴𝐴2)|𝜉𝜉′|2 det 𝐿𝐿
�(𝐿𝐿22 + 2𝐵𝐵𝐿𝐿21)𝑖𝑖𝜉𝜉′ ⋅ ℎ�(𝜉𝜉′, 0) − (𝐿𝐿12 + 2𝐵𝐵𝐿𝐿11)ℎ𝑁𝑁�(𝜉𝜉′, 0)�,       (21) 

𝑃𝑃𝑁𝑁 = 𝜂𝜂(𝑖𝑖𝜉𝜉𝑗𝑗)𝐴𝐴(�𝜉𝜉′�
2
+𝐴𝐴)

(𝐵𝐵2−𝐴𝐴2)|𝜉𝜉′|2 det 𝐿𝐿
�(𝐿𝐿22 + 2𝐵𝐵𝐿𝐿21)𝑖𝑖𝜉𝜉′ ⋅ ℎ�(𝜉𝜉′, 0) − (𝐿𝐿12 + 2𝐵𝐵𝐿𝐿11)ℎ𝑁𝑁�(𝜉𝜉′, 0)�,       (22) 

𝑄𝑄𝑗𝑗 = (𝑖𝑖𝜉𝜉𝑗𝑗)
det 𝐿𝐿

�2𝜂𝜂𝜂𝜂(�𝜉𝜉′�
2
+𝐴𝐴)

(𝐵𝐵2−𝐴𝐴2)|𝜉𝜉′|2
(𝐿𝐿22 + 2𝐵𝐵𝐿𝐿21) − 𝐿𝐿21� 𝑖𝑖𝜉𝜉′ ⋅ ℎ�(𝜉𝜉′, 0) + 1

𝛼𝛼𝛼𝛼
ℎ𝚥𝚥� (𝜉𝜉′, 0),        (23) 

= �𝑖𝑖𝜉𝜉𝑗𝑗�
det 𝐿𝐿

�
2𝜂𝜂𝜂𝜂��𝜉𝜉′�

2
+𝐴𝐴�

(𝐵𝐵2−𝐴𝐴2)|𝜉𝜉′|2
(𝐿𝐿22 + 2𝐵𝐵𝐿𝐿21) − 𝐿𝐿21� ℎ𝑁𝑁�(𝜉𝜉′, 0),                                                   (24) 

 𝑄𝑄𝑁𝑁 = 𝐿𝐿11ℎ𝑁𝑁� �𝜉𝜉′,0�−𝐿𝐿21𝑖𝑖𝜉𝜉′⋅ℎ��𝜉𝜉′,0�
det 𝐿𝐿

,              (25) 

where 

𝜂𝜂 = 𝛼𝛼+𝛽𝛽+𝛿𝛿
𝛼𝛼

. 

Substituting (21), (22), (23), (24) and (25) to (7), we obtain the formula of 𝐮𝐮� = 𝑢𝑢�𝑗𝑗 =

〈𝑢𝑢�1,𝑢𝑢�2, … ,𝑢𝑢�𝑁𝑁−1〉 and  𝑢𝑢�𝑁𝑁 in equation system of (5) which completes the proof of Theorem 2 

 

4 Conclusion  

 The conclusion of the article that we can find the solution formula of velocity 𝐮𝐮� and 

density 𝜌𝜌 of the model problem (2). We can see that for the further research, we can estimate the 

operator families of the solution. 
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