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Abstract – Modeling of fatigue life of composite materials under various loading and environment conditions becomes 
important and challenging task from viewpoint of performance and reliability as it forms a basis for lifetime assessment of 
composite structures under complex variable state of stress. Application of soft computing techniques as new approach and 
route for modelling of composite material fatigue lives has attracted a great interest recently. The applications of soft 
computing techniques in fatigue life assessment of composite materials are reviewed and discussed in this paper.    
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1. Introduction 

Driven with advancement of technology applications, requirements for new classes of materials having desired 
properties, meeting special engineering applications, cost-effective and also long lasting are continuously 
increasing in the last decades. Introducing new materials in line of applications, while offering favourable and 
potential benefits, it clearly also brings many challenges. For an instance, the new materials characterization to 
fully understand their characteristics and performance needs to be carried out intensively. Moreover, new 
parameters of material behaviour may need to be introduced, implemented and tested in development of such 
materials from design to production stages, while further process optimization may be necessary as well. 
Modelling and characterization of such new materials under various loading and environment conditions hence 
become important tasks to provide valuable and useful design information thoroughly. 
 From viewpoint of performance and reliability, it is always crucial to understand the fatigue degradation of 
materials in various applications to ensuring the long-term reliability of a component or structure. It is well 
known that fatigue failure is the most important aspect in design of structures because it is closely related to 
performance, durability and reliability of the structures (Reifsnider, 1991). It is reported from extensive study by 
the US National Institute of Standards and Technology that the majority of structural failures occur through a 
fatigue mechanism and the fatigue failures can count approximately 60% of the examined failures (Manson and 
Halford, 2006). Lifetime assessment of materials to assess their useful lifetime during their service in design thus 
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becomes a challenging task. The ability to make accurate predictions of fatigue durability is also critical to the 
design optimization (Post et al., 2008; Schijve, 2009). 
 Recently, composite materials have represented important classes of developed materials for various 
structural and industrial applications, ranging from transportation and construction to oil and gas and aerospace 
industries. Composite materials such as fibre reinforced polymer (FRP) composites have become more popular 
materials instead of metals in many components of automotive, aircraft, ship hull and wind turbine blade 
structures due to their excellent properties such as high strength to weight ratio, tailored properties along 
preferred direction and high corrosion resistance. Applied in many important as well as critical applications, it is 
therefore desirable that behaviour and responses of composite materials under spectrum or variable amplitude 
fatigue loadings can be comprehended and assessed accurately. 
 Nonetheless, in contrast to that of metals, modelling of fatigue life of composite materials under complex and 
spectrum loading conditions comes with a greater challenge and complexity as many factors or considerations 
must be taken into account in the modeling of fatigue life of composite materials, such as fibre and matrix types, 
lay-ups or laminates, fatigue states governed by stress ratios-R and on-axis/off-axis orientations, anticipated 
failure modes as well as related influence of manufacturing method chosen. As a result, the modelling of fatigue 
life of composite materials becomes complicated and developing a universal understanding of the performance 
of composite materials under spectrum fatigue loadings is also very difficult as many factors should be included 
and anticipated in the model (Reifsnider, 1991; Harris, 2003; Vassilopoulos, 2010; Passipoularidis, 2011). 
 Ideal approach for modelling of fatigue life of composite materials, as described by Sendeckyj (1991), is the 
one which is based on a damage metric that can accurately model the experimentally observed damage 
accumulation process, take into account all related material, test and environmental variables, correlate the data 
for a large class of materials, permit the accurate prediction of laminate fatigue behaviour from lamina fatigue 
data, be extendable to two-stage and spectrum fatigue loading as well as take into account fatigue data scatter. 
However, as so many factors should be included in the model as mentioned previously it is obvious that such an 
approach which can meet all these requirements simultaneously is very difficult to be developed. In addition, not 
only the complexity of the model itself, but also the experimental works required to extract the appropriate 
material parameters of the model would hinder such model development as the amount of experimental data is 
strongly dictated by the number of model parameters (Hour and Sehitoglu, 1993). Thus, such model 
development will be frequently impeded by a large amount of fatigue testing data needed, which is very costly 
and time consuming to collect. In fact, in most cases researchers only had limited experimental fatigue data in 
hands. 
 Keeping the above matter in mind, several approaches have been proposed for the modelling of fatigue life of 
composite materials with the main aim to provide prediction of fatigue life of composite materials under variable 
amplitude loading by utilizing less fatigue data but at the same time ensuring reasonably accurate fatigue life 
prediction. Here, the ‘prediction’ term should be meant in term extrapolation i.e. the model capability should be 
examined for new loading conditions for the same material or it is examined for other material systems based on 
model derived or developed for a specific material. 
 In general, the approaches for modelling of fatigue life of composite materials may be further classified into 
two categories (Sendeckyj, 1991): fatigue damage accumulation and macroscopic failure (empirical) theories. In 
the first approach, a damage metric such as residual strength, residual stiffness, crack length, delamination area 
will be introduced and used as a damage accumulation indicator for a composite during fatigue loading and it 
will be further correlated to the composite fatigue life through a well determined criterion. On the other hand, the 
later approach does not take into account the damage accumulation and mechanisms occurring during fatigue 
loading. Rather, a simpler idea is adopted in the second approach i.e. applied cyclic stress (S) or strain (ε) is 
directly associated with operational lifetime or fatigue cycles (N) that a material can withstand or endure under 
the applied stress or strain via the S-N or ε -N curves. Clearly, the aforementioned approaches in predicting 
fatigue life of composite materials represent two main concepts in the fatigue life prediction: the damage tolerant 
and safe-life concepts i.e. whether the presence of damage is allowed as long as it is not critical and leads to 
sudden failure, or on the other hand the structure is only allowed to operate until a certain value of operational 
lifetime before the initiation of any measurable damage or cracks (Vassilopoulos, 2010). 
 Considering that fatigue is essentially a stochastic process in nature, a new approach or paradigm has been 
proposed and introduced recently in predicting the fatigue life of composite materials by using and exploiting 
soft computing or computational intelligence techniques. Different with the aforementioned approaches, the soft 
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computing-based fatigue life prediction approach has capability to take into account and cope with the stochastic 
and uncertainty aspects which are well known inherent with the fatigue phenomena. Inspired by biological or 
nature processes, the soft computing models mimic and emulate certain characteristics in the nature processes to 
perform a kind of optimization search and task. Thus, the soft computing models have ability to extract and 
represent nonlinear interactions among variables involved in the fatigue process. In fact, fatigue life prediction of 
composite materials is the field where computational intelligence or soft computing techniques found to be 
successful and useful tools which are able to produce reliable prediction using a limited body of fatigue data and 
in turn supporting design decisions very soon and reliably. In addition, it is also interesting to note that the soft 
computing approach is also able to provide bounds of fatigue life prediction, thus providing statistical 
representative of fatigue lives and describing the scatter of fatigue lives. As a result, the approach attracted great 
interest in fatigue research community and has been a new route in the task of fatigue life prediction of 
composite materials in recent years. 
 In this paper, a brief review of neural networks and evolutionary optimization techniques and their 
applications in the field of fatigue life assessment of composite materials is presented and discussed. It is shown 
that several models of soft computing techniques have been developed and actively employed in recent years for 
the fatigue life assessment of composite materials. In the first section of this work, fatigue life assessment of 
composite materials in wide range of applications from unidirectional to multidirectional laminate are 
highlighted. It is shown that soft computing techniques particularly neural networks and evolutionary algorithms 
have been proven to be sufficient and useful tools for such modelling task.  

2. Neural Networks and Evolutionary Algorithms for Optimization 

Neural networks (NN) are inspired by the biological network of neurons in the human brain that learns from 
external experience, handles imprecise information, stores the essential characteristics of the external input and 
generalizes previous experience (Eeckman, 1992). 
 In the biological neural networks, a neuron has three main components: dendrites (receiver), soma (cell body) 
and axon (transmitter). Further, the axon eventually branches into strands and sub-strands and at the terminals of 
these strands are synapses. A synapse acts as an elementary structure and functional unit connecting two 
neurons, that is an axon strand of one neuron is connected to a dendrite of another neuron by the synapse. The 
processing of information is as follows: when the input signals (electrical impulses) reach the synapses, certain 
chemicals called neurotransmitters are released. The neurotransmitters then diffuse across the synaptic gap 
(junction). The receivers (dendrites) receive the signals. The incoming information is summed up by soma and 
then delivered along the neuron’s axon to the dendrites at its end. The information will again be passed if the 
stimulation caused by the signals has exceeded a certain threshold. Otherwise, it would not be passed further. 
The synapse’s effectiveness is adjusted by the signals passing through it so that the synapses can learn from the 
activities they involve and participate. Fig. 1 depicts the schematic of a neuron in biological networks. 
 NN attempts to mimic the biological neural networks: the processing unit is the artificial neuron or node. The 
synapses or inter-neuron connections are described by synaptic weights. An operator performs a summation of 
the input signals (NN inputs) weighted by the respective synapses. Finally, an activation function transfers the 
summation and also confines the permissible amplitude range of the output signals. Hence, NN are essentially 
devices of parallel and distributed processing of many interconnected neurones (nodes or hidden units) whose 
associated weights determine the strength of the signal passed through them, which simulate the basic operating 
principles of the neurones in biological brain. As no particular structure or parametric form is assumed a priori 
and the strengths of the connections are computed in a way that captures the essential features in the data, NN 
has abilities in modeling complex nonlinear processes without a priori assumptions about the nature of the 
generating process by learning and generalizing inputted patterns of the process to be sought (Rumelhart et al., 
1986). Therefore, NN is suitable for nonparametric statistical inference either in regression or classification 
tasks. 
 The most widely used procedure in NN learning is backpropagation, which is a breakthrough in the 
resurgence of interest in NN study (Rumelhart et al., 1986). The term backpropagation refers to the manner in 
which error information from output layer is backpropagated through the layers within the network. The process 
is repeated consecutively immediately after the input samples are propagated forward through the network. For 
each propagating-backpropagating pass, the weights of the network are updated iteratively. The updating process 
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is repeated until predefined stopping criterion is met. The stopping criteria could be in form of performance goal 
measured by mean square error (MSE), maximum iteration number, minimum performance gradient and 
minimum change in performance. During the backpropagation procedure, NN learning task is hence in principle 
a minimization problem to particular objective function and the minimization problem is related to the method 
for updating the NN weights (Nabney, 2002; MacKay, D.J.C., 2004). A basic method for updating NN weights 
is gradient descent, while other optimization methods such as Levenberg-Marquardt and conjugate gradient 
methods for updating the NN weights are also available in literature (Fletcher, 1980; Nocedal and Wright, 2006; 
Foresee and Hagan, 1997). It is worth noting that Funahashi (1989), Hartman et al. (1990) and Hornik et al. 
(1989) have proved that a single hidden layer is sufficient for the NN to approximate any function to any random 
degree of accuracy, with the condition that the activation functions of the network are nonlinear, which is known 
as the universal approximation theorem. 
 

 
Fig. 1. A schematic of (a) biological neuron, and (b) synapse (Fraser, 1998). 

 
 On the other hand, evolutionary computation or algorithm (EA) is an area of computer science that uses ideas 
from biological evolution to solve computational problems (Mitchell and Taylor, 1999). Based on population-
based collective learning process, classes of evolutionary algorithms such as genetic algorithms (Holland, 1975), 
evolution strategies (Rechenberg, 1973), evolutionary programming (Fogel, Owens and Walsh, 1996) and 
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genetic programming (Koza, 1992) share a common conceptual base of simulating the evolution of population 
individual via the processes of selection, mutation and reproduction. 
 The general procedure of EA may be described as follows (Grosan and Abraham, 2007): 

a. A population of candidate solutions for the optimization task to be solved is initialized. 
b. New solutions are created by applying reproduction operators (mutation and crossover). 
c. The fitness of solutions is evaluated and suitable selection strategy is then applied to determine which 

solutions are to be maintained into the next generation. 
d. The procedure is iterated until stop criteria (such as: performance goal, maximum iteration number, 

minimum change in performance, time) are met. 
It can be seen that the behaviour of EA is determined by exploitation and exploration relationship kept 
throughout the run by which prior knowledge and heuristics of the individuals in population are incorporated and 
evolved through the processes which continue to adapt in a changing environment (Subudhi and Jena, 2011). 
 Bearing simplicity, self-adaptation and robust response to changing circumstance, EA is suitable for many 
difficult optimization problems in particular multi-modal, multi-objectives, mixed variables and noncontinuity 
problems. In addition, the use of EA for solving optimization problems does not dictate special conditions or 
properties for the objective function to be used, which is another advantage of using EA for solving optimization 
problems. 
 In fact, one can clearly see that NN represents a paradigm of programming which relies on massivity and 
distribution of processors, while EA represents another paradigm of programming which relies on the concept of 
adaptation and selection through interaction. Both approaches are therefore creature and nature inspired 
algorithms which are beneficial for solving several problems and applications of optimization (Mohamed et al., 
2012). 

3. Neural Networks and Evolutionary Algorithms for Fatigue Life Prediction of Composite Materials 

The characteristic of NN that can be taught to emulate relationships in sets of data to subsequently predict the 
outcome of another new set of input data, for example, another composite system or a different stress 
environment, is exploited to yield faster acquisition of fatigue data, thus reducing experimentation time and 
cutting down the associated high costs. In addition, the use of EA in the field of fatigue life prediction has also 
opened a new horizon and perspective as genetic programming as a class of EA has been proved as a stochastic 
non-linear regression analysis tool in modeling the fatigue life of several composite materials which compares 
favourably with other conventional methods such as linear regression and Weibull statistics that are commonly 
used for this type of material analysis (Vassilopoulos et al., 2008). 
 In metals applications and analyses, NN have been previously employed for elevated temperature creep-
fatigue life prediction (Venkatesh and Rack, 1999), fracture toughness and tensile strength of microalloy steel 
evaluation (Haque and Sudhakar, 2002), prediction of fatigue crack growth rate in welded tubular joints (Fathi 
and Aghakouchak, 2007), while genetic algorithm (GA) has been employed as parameterization tool for fatigue 
crack growth of Al-5052 (Bukkapatnam and Sadananda, 2005) as well as optimization tool for fuzzy logic and 
NN models in life prediction of boiler tubes (Majidian and Saidi, 2007). NN has been also employed to build a 
probability distribution function for fatigue life prediction of steel under step-stress conditions (Pujol and Pinto, 
2011). Also, Klemenc and Fajdiga (2012) have employed a class of evolutionary algorithms to estimate S-N 
curves and their scatter using a differential ant-stigmergy algorithm (DASA). In (Klemenc and Fajdiga, 2013), 
the authors have extended the use of evolutionary algorithms of GA and DASA for estimating E-N curves and 
their scatter. 
 In recent years, soft computing techniques have found their applications in the field of fatigue life assessment 
of composite materials in particular under variable amplitude loading conditions (Aymerich and Serra, 1998; Lee 
and Almond, 2003). The use of soft computing techniques in fatigue life assessment of composite materials has a 
wide range of applications from unidirectional (Al-Assaf and El-Kadi, 2001; El-Kadi and AlAssaf, 2002) to 
multidirectional laminate (Freire Junior et al., 2005; Vassilopoulos et al., 2007; Vassilopoulos et al., 2008; Freire 
Junior et al., 2007; Freire Junior et al., 2009). Moreover, soft computing techniques have been also proven to be 
a sufficient tool for modelling fatigue life of composite materials under uniaxial to multiaxial state of stress. The 
comprehensive review of the recent works is presented here. 



Hidayat et al. 
 

47 

 Al-Assaf and El-Kadi (2001) and El-Kadi and Al-Assaf (2002) assessed the fatigue life of unidirectional 
glass fiber/epoxy laminae using different neural network paradigms, namely feed forward (FF), modular (MN), 
radial basis function (RBF) and principal component analysis (PCA) networks, and compared the prediction 
results to the experimental data. Specimens with five fiber angle orientations of 0°, 19°, 45°, 71° and 90° were 
tested under three stress ratio-R conditions of -1, 0 and 0.5. Ninety two experiment data made up the application 
data for the networks. They found that NN can be trained to model the nonlinear behaviour of composite 
laminate subjected to cyclic loading and the prediction results were comparable to other current fatigue-life 
prediction methods. 
 Freire Junior et al. (2005) followed different approach, by which NN was utilized to build constant life 
diagrams (CLD) of fatigue. The researchers built CLD of a plastic reinforced with fiberglass (DD16 material) 
with [90/0/±45/0]S lay-up. Four training data sets (each set consists of 3R, 4R, 5R and 6R values, respectively) 
were set up from twelve stress ratio-R values. It was found that the use of NN to build CLD was very promising 
where the NN model trained using only three S-N curves could generalize and construct other remaining S-N 
curves of the CLD building. For better generalization, however, six S-N curves should be utilized in NN training. 
Vassilopoulos et al. (2007) criticized that the determination of six S-N curves was a costly task for the NN 
prediction purpose. Instead, these authors used a small portion, namely 40 – 50%, of the experimental data. It 
was shown that it is possible to build CLD using the small portion data and NN was proven to be a sufficient tool 
for modelling fatigue life of GFRP multidirectional laminates. In their further work, Vassilopoulos et al. (2008) 
have employed genetic programming for modeling the fatigue life of several fibre–reinforced composite material 
systems. It was shown that if the genetic programming tool is adequately trained, it can produce theoretical 
predictions that compare favourably with corresponding predictions by other, conventional methods for the 
interpretation of fatigue data. It was also pointed out that the modeling accuracy of this computational technique 
was very high. In addition, the proposed modeling technique presented certain advantages compared to 
conventional methods. The new technique was a stochastic process that led straight to a multi-slope S–N curve 
that follows the trend of the experimental data, without the need for any assumptions. 
 Bezazi et al. (2007) have investigated fatigue life prediction of sandwich composite materials under flexural 
tests using a Bayesian trained artificial neural network. The authors noticed the good generalization of NN 
trained with Bayesian technique in comparison to that with maximum likelihood approach in predicting fatigue 
behaviour of the sandwich structure. Nonetheless, only one lay-up configuration was considered in the work. 
Freire Junior et al. (2007, 2009), in their next attempts, showed that the use of modular networks (MN) gives 
more satisfactory results than feed-forward (FF) neural network. However, it was still necessary to increase the 
training sets for better results. Bucar et al. (2007) presented an improved neural computing method for 
describing the scatter of S–N curves.  
 The works showed that soft computing techniques have been proven to be a sufficient tool for modelling 
fatigue life of composite materials, ranging from unidirectional to multidirectional laminate types and from 
uniaxial to multiaxial state of stress under multivariable amplitude loadings. Furthermore, with the introduction 
of EA and the combined system identification technique and NN, perspectives on fatigue life prediction of 
composite materials based on soft computing framework have been broaden. Moreover, it is also possible to 
combine both NN and EA techniques to be used in predicting the fatigue life of composite materials so that the 
effectiveness of the fatigue life prediction task can be further enhanced. In fact, it is still necessary to optimize 
the task of fatigue life prediction of composite materials under variable amplitude loading and/or multiaxial state 
of stress for much more efficient fatigue life assessment of composite materials in particular by utilizing less 
fatigue data but at the same time ensuring reasonably accurate prediction. As stated by Zhang and Friedrich 
(2003) that fatigue behaviour is still so complicated that the problem requires more effort before NN can be used 
with more confidence. Therefore, further developments and implementations of other optimization techniques 
for fatigue life assessment of composite materials would be interesting as research subjects in future. 

4. Conclusions 

In the present paper, a brief review of applications of NN and EA optimization techniques in fatigue life 
assessment of composite materials has been presented. Main motivation for using such techniques is to produce 
efficient fatigue life prediction of composite materials by cutting down the fatigue tests and cost, but at the same 
time ensuring reasonably accurate fatigue life prediction. Inspired by the biological network of neurons in the 
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human brain that learns from external experience, handles imprecise information, stores the essential 
characteristics of the external input and generalizes previous experience, the optimization techniques have been 
shown as promising techniques for modelling fatigue life of composite materials, ranging from unidirectional to 
multidirectional laminate types. Further developments and implementations of other optimization techniques for 
fatigue life assessment of composite materials would be interesting as research subjects in future. 
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