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Abstract – This short communication presents a meshless local B-spline basis functions-finite difference (FD) method for 

transient heat conduction analysis. The method is truly meshless as only scattered nodal distribution is required in the 

problem domain. It is also simple and efficient to program. As it has the Kronecker delta property, the imposition of 

boundary conditions can be incorporated efficiently. In the method, any governing equations are discretized by B-spline 

approximation in the spirit of FD technique using local B-spline collocation. It hence belongs to a generalized FD method, in 

which any derivative at a point or node is stated as neighbouring nodal values based on the B-spline interpolants. Numerical 

results show the effectiveness and efficiency of the meshless method for analysis of transient heat conduction in complex 

domain.   
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1. Introduction 

Transient heat conduction is an important phenomenon which is commonly encountered in many engineering 

applications. It is essential to have the precise knowledge of temperature distribution and variation as the 

temperature varies with respect to time in many engineering or industrial components. Due to the complexity of 

the component geometry in most practical situations, numerical methods such as finite element (FE) and finite 

volume (FV) methods are commonly chosen and employed to obtain reasonable results. Nonetheless, due to the 

fact that mesh generation can be time consuming and the most expensive part in the simulation (Onate et al., 

1996 ; Griebel. and Schweitzer, 2000), meshless methods have been introduced and developed in the last two 

decades as new emerging numerical techniques in engineering and science. The interested readers are directed to 

Liu (2009) and Cottrell et al. (2009) for historical development and progression of meshless methods and 

isogeometric analysis, including references therein.  

 In this study, a new meshless local B-spline basis functions-finite difference (FD) method is presented for 

transient heat conduction analysis. The method is truly meshless as only scattered nodal distribution is required 

in problem domain, hence simple and efficient to program. In the method, any governing equations are 

discretized by B-spline approximation in the spirit of FD technique using local B-spline collocation i.e. any 

derivative at a point or node is stated as neighbouring nodal values based on the B-spline interpolants. In 

comparison to FEM, the method is shown to be computationally efficient.     

2. Meshless B-splines based FD method 

The i -th univariate B-spline basis function of order k  (or degree 1−= kp ), ( )tN k,i , is defined recursively 

by the Cox-de Boor recursion formula as (de Boor, 2001): 
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( )tN i 1,  is a step function and the ( )tN ki,  is a linear combination of two ( )1−k  order basis functions for 1k . In 

the formula, the convention 00/0 =  is used for the division calculation. The basis functions of higher 

dimensional problems are constructed by taking the product of the univariate B-spline basis functions 

( )knk NNb ,,0 ,...,=  as the bases for the space C of polynomial functions of degree less than or equal to 1−k  in 

an interval    knbaI +==  ,, 011 .  

Having notation aN  for the B-spline basis functions in general, a function ( )xu  can then be expressed with 

B-spline approximation in a form as follows:  
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where: dR x  is vector of spatial variables or point position, ( ) ( ) ( )yMxNN ljki
a

,,=x  are the B-spline bases in 

2D,   are the coefficients of approximation related to ( )x
aN  and N is the number of B-spline bases. The 

tensor product B-spline bases have the partition of unity property: 
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The B-spline bases are preferred here to satisfy the Kronecker delta property for convenience of the 

imposition of boundary conditions. B-spline bases from an open-uniform knot vector with full multiplicity of its 

end knots (no interior knots) are here chosen. Note that the B-spline basis functions of p degree thus simply 

reduce into Bezier approximation of the same degree (Piegl and Tiller, 1995; Farin, 2002). Now consider a 

subset  nsii xxx ,...,, 2=  in the global set   containing of the original set of points
d

NCi Rxxx ,...,, 2 . 

The derivative of a function ( )xu  at jx of the subset i  is obtained as: 
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where: L  is the differential operator, ( ) ( )j
a

j xLNx =H  is the vector containing of the derivatives of B-spline 

basis functions evaluated at jx , B has entries of B-spline bases a
jiji Nb ,, = , nsi ,...,1= ; BNj ,...,1= , α  is the 

vector of  T1,...,
N and u  is the nodal values of the subset i . 

Weights vector w  and the differentiation matrix mD to obtain the integrated solutions ( )xu  over the problem 

domain  are further stated as: 

 

( ) BHw /ix=     (7) 

 

fuD =m      (8) 

where: u  is the vector of global unknowns and f is the vector of external forces.  
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3. Numerical Illustrations 

A complex problem domain shown in Fig. 1(a) was considered and subjected to a non-uniform heat source 

(Hematiyan et al., 2011). The material constants are k = 64 W/(m K), c = 434 J/(kg K), ρ = 7850 kg/m3 and α = 

11.710-6 m2/s.  The problem was also simulated by FEM using ANSYS software with 4126 nodes and 7920 

elements for reference or benchmark solutions. Fig. 2(b) shows the meshless discretization. For the transient 

simulation, the Crank-Nicolson technique was employed in the present study with the time step Δt = 0.1 s and 

the final time tf  was set to be 500 s. The heat source is given as :  

 ( ) ( )
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Fig. 2 depicts the comparison of temperatures along the lines P-Q and L-M in the domain by the present local B-

FDM and FEM from the transient simulation. The supporting nodes number ns = 7 is fixed and the B-spline 

order is varied as k = 5, 6 and 7. Fig. 3 shows the temperature contours in the domain obtained by the FE and 

present local B-FD (k = 5, ns = 12) methods at tf = 500 s. Further, Table 1 presents comparison of simulation 

times by the local B-FDM (k = 5, ns = 12) and FEM (ANSYS) for the problem. MATLAB was used to program 

the generalized FD method in HP Compaq with OS Windows XP, processor of Intel Pentium 4 512 MB RAM.  

  

 

 

 

 

 

 

 

 

 

 

 

                                              (a)                                                            (b)                                                               

Fig. 1. (a) The problem geometry and boundary conditions, and (b) 496 nodes for the meshless local B-FDM. 
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Fig. 2. Comparison of temperature distributions along the lines (a) P-Q and (b) L-M in the domain by the 

meshless local B-FD and FE methods. 
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Fig. 3. Comparison of temperature contours in the problem domain by the FE and meshless local B-FD 

methods at tf = 500 s. 

 

Table 1. Comparison of simulation times by the FE and meshless local B-FD methods for the transient heat 

conduction problem 

 Δt = 0.1 sec Δt = 0.4 sec 

496 nodes FEM Meshless local B-FDM 

 

FEM 

 

Meshless local B-FDM 

 
Simulation times (sec) 573 129.70 140 35.44 

Normalized simulation times  1.1552 0.2615 0.2823 0.0715 

4. Conclusions 

In this short communication, a new meshless local B-spline basis functions-finite difference (FD) method has 

been presented for analysis of transient heat conduction. It is truly meshless, hence simple and efficient to 

program. It belongs to a generalized FD method. Comparison of the simulation results by the method and those 

by FE method shows its effectiveness and efficiency for transient heat conduction analysis in complex domain. 

References 

Cottrell, J.A., Hughes, T.J.R. and Bazilevs, Y. (2009), “Isogeometric Analysis Toward Integration of CAD and 

FEA”, John Wiley & Sons, Ltd, UK.  

de Boor, C. (2001), “A Practical Guide to Splines”, revised ed., Springer, New York. 

Farin, G. (2002), “Curves and Surfaces for Computer Aided Geometric Design”, Academic Press, San Diego, 

CA. 

Griebel, M. and Schweitzer, M.A. (2000), “A particle-partition of unity method for the solution of elliptic, 

parabolic, and hyperbolic PDEs”, SIAM Journal of Sciencetific Computing, Vol. 22. 

Hematiyan, M.R., Mohammadi, M., Marin, L. and Khosravifard, A. (2011), “Boundary element analysis of 

uncoupled transient thermo-elastic problems with time- and space-dependent heat sources”, Applied 

Mathematics and Computation, Vol. 218. 

Liu, G.R. (2009), “Meshfree Methods: Moving Beyond the Finite Element Method”, 2nd ed., CRC Press, USA.  

Onate, E. Idelshon, S., Zienkiewicz, O.C. and Taylor, R.L. (1996), “A finite point method in computational 

mechanics. Applications to convective transport and fluid flow”, International Journal for Numerical 

Methods in Engineering, Vol. 39. 

Piegl, L. and Tiller, W. (1995), “The NURBS book”, Springer, New York. 

 

  


