EFFECT OF TRISODUM PHOSPHAT CONCENTRATION ON THE MORPHOLOGY AND CORROSION RESISTANCE OF MAGNESIUM ALLOY AZ31B USING PLASMA ELECTROLYTIC OXIDATION (PEO)
Abstract
Keywords
Full Text:
PDFReferences
Barati Darband, G., Aliofkhazraei, M., Hamghalam, P., & Valizade, N. (2017). Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. Journal of Magnesium and Alloys, 5(1), 74–132. https://doi.org/10.1016/j.jma.2017.02.004
Ghasemi, A., Scharnagl, N., Blawert, C., Dietzel, W., & Kainer, K. U. (2010). Influence of electrolyte constituents on corrosion behaviour of PEO coatings on magnesium alloys. Surface Engineering, 26(5), 321–326. https://doi.org/10.1179/026708408X344671
Ma, H., Li, D., Liu, C., Huang, Z., He, D., Yan, Q., … Shen, D. (2015). An investigation of (NaPO3)6 effects and mechanisms during micro-arc oxidation of AZ31 magnesium alloy. Surface and Coatings Technology, 266, 151–159. https://doi.org/10.1016/j.surfcoat.2015.02.033
Bondan T. Sofyan, Oknovia Susanti, Myrna A. Mochtar, Magnesium dan Paduannya Sebagai Biomaterial: Sebuah Kajian Literatur, Prosiding Seminar Material Metalurgi 2013, Serpong, 27 November 2013, pp. 27-33.
Song, Y., Shan, D., Chen, R., Zhang, F., & Han, E. H. (2009). Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid. Materials Science and Engineering C, 29(3), 1039–1045. https://doi.org/10.1016/j.msec.2008.08.026
Tadashi, K., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity ? Biomaterials 27 (2006) 2907–2915, 27, 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
DOI: http://dx.doi.org/10.12962/j2746279X.v2i1.8770
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.