Optimization of Polycondensation of Polylactic Acid Using Al(DS)3 Catalyst

Ahmad Musonnifin Aziz, Anggi Tirta Sari Br Nainggolan, Rossesari Nailah Syahbarakat, Arief Widjadja, Tri Widjaja

Abstract


Poly(lactic acid) (PLA) is a promising candidate as a renewable resource for plastic production. The use of PLA as a plastic material helps alleviate issues associated with waste. In the production of Polylactic Acid (PLA), by-products such as water are generated, and the Lewis acid catalyst used in PLA production is susceptible to rapid decomposition and deactivation by water. This research aims to optimize PLA polymerization using a water-resistant catalyst, Al(DS)3, to achieve an optimum PLA molecular weight.The synthesized PLA is then analyzed using viscometry to determine its molecular weight. Optimization is carried out using the Response Surface Methodology (RSM) with a Central Composite Design (CCD) matrix. The molecular weight of the synthesized PLA is measured through viscometry, and the data is input into Minitab to obtain the optimum point. This optimum point is further validated by calculating the error value from the optimization results. The optimized PLA results in a molecular weight of 10.313 g/mol with an error value of 4.47% at a catalyst concentration of 0.15% and an operating temperature of 180 °C.

Keywords


Lewis Acid Surfactant Combined Catalyst, Polikondensasi, Polylactic acid, Sodium Dodesylsulfate

Full Text:

PDF

References


S Rahmayetty, Y. Whulanzaa, Sukirnoc , S. F. Rahmana, E. A. Suyono, M. Yohda, M. Gozana, “Use of Candida rugosa lipase as a biocatalyst for L-lactide ring-opening polymerization and polylactic acid production,” Biocatal. & Agricultural Biotechnol., vol. 16, pp. 683-691, 2018.

H. R. Kricheldorfa and S. M. Weidner, “About the influence of salicylic acid on tin(II)octanoate-catalyzed ring-opening polymerization of L-lactide,” Eur. Polym. J., vol. 119, pp. 37-44, Oct. 2019.

T. Maharana, B. Mohanty, Y. S. Negi, “Melt-solid polycondensation of lactic acid and its biodegradability,” Prog. Polym. Sci., vol. 34, pp. 99–124, Jan. 2009.

J. A. Heredia-Guerrero, G. Caputo, S. Guzman-Puyol, G. Tedeschi, A. Heredia, L. Ceseracciu, J. J. Benitez, A. Athanassiou, “Sustainable polycondensation of multifunctional fatty acids from tomato pomace agro-waste catalyzed by tin (II) 2- ethylhexanoate,” Mater. Today Sustainability, vol. 3-4, pp. 100004, Mar. 2019.

L. S. Chafran, M. F. Paiva, J. O. C. França, M. J. A. Sales, S. C. L. Dias, J. A. Dias, “Preparation of PLA blends by polycondensation of D,L-lactic acid using supported 12-tungstophosphoric acid as a heterogeneous catalyst,” Heliyon, vol. 5 (5), pp. e01810, May 2019.

K. Pradhan, S. Paul, A. R. Das, “Fe(DS)3, an efficient Lewis acid-surfactant combined catalyst (LASC) for the one pot synthesis of chromeno[4,3-b]chromene derivatives by assembling the basic building blocks,” Tetrahedron Lett., vol. 54 (24), pp. 3105–3110, Jun. 2013.

Y. Ye, Q. Ding, J. Wu, “Three-component reaction of 2-alkynylbenzaldehyde, amine, and nucleophile using Lewis acid-surfactant combined catalyst in water,” Tetrahedron, vol. 64 (7), pp. 1378-1382, Feb. 2008.

H. Firouzabadi, N. Iranpoor, A. Khoshnood, “Aluminum tris (dodecyl sulfate) trihydrate Al(DS)3·3H2O as an efficient Lewis acid-surfactant-combined catalyst for organic reactions in water: Efficient conversion of epoxides to thiiranes and to amino alcohols at room temperature,” J. Mol. Catal. A Chem., vol. 274 (1-2), pp. 109–115, Sep.2007.

S. Xie, M. Yuan, T. Wang, J. Liu, J.Yan, Z. Li, J. Peng, “Sodium dodecyl sulfate (SDS)-assisted preparation of homogeneous monodisperse MnCO3 microspheres and its application to the synthesis of LiMn2O4,” Ceramics Int., vol. 48 (7), pp. 10113-10119, Apr. 2022.

S. H. Yazdabadi, H. Farrokhpour, M. Tabrizchi, “Using surfactants as matrix for the matrix-assisted laser desorption/ ionization time of flight mass spectrometry (MALDI-TOF-MS) of amino acids: Sodium dodecyl sulfate (SDS) and sodium octyl sulfate (SOS),” Biophys. Chem., vol. 278, pp. 106667, Nov. 2021.

E. Colacinoa, J. Martinez, F. Lamatya, L. S. Patrikeeva, L. L. Khemchyan, V. P. Ananikov, I. P. Beletskaya, “PEG as an alternative reaction medium in metal-mediated transformations,” Coordination Chem. Rev., vol. 256 (23-24), pp. 2893-2920, Dec. 2012.

C. Federer, V. Claus, N. Hock, J. D. Friedl, R. Wibel, A. Bernkop-Schnürch, “Charge-reversal nanoemulsions: A systematic investigation of phosphorylated PEG based surfactants,” Int. J. Pharmaceutics, vol. 613, pp. 121438, Feb. 2022.

E. T. Bergslien, “X-ray diffraction (XRD) evaluation of questioned cremains,” Forensic Sci. Int., vol. 332, pp. 111171, Mar. 2022.

D. Shahdan, R. S. Chen, S. Ahmad, “Optimization of graphene nanoplatelets dispersion and nano-filler loading in bio-based polymer nanocomposites based on tensile and thermogravimetry analysis,” J. Mater. Res. Technol., vol. 15, pp. 1284-1299, Nov-Dec. 2021.

H. Shinzawa, J. Mizukado, “Near-infrared (NIR) spectroscopic imaging analysis of poly (lactic acid)-nanocomposite using disrelation mapping,” J. Mol. Structure, vol. 1217, pp. 128332, Oct. 2020.

M. Nishida, Y. Hayakawa, M. Nishida, “Correlative analysis between solid-state NMR and morphology for blends of poly (lactic acid) and poly (butylene adipate-co-butylene terephthalate),” Polymer, vol. 200, pp. 122591, Jun. 2020.

J. Oliveira, G. S. Brichi, J. M. Marconcini, L. H. C. Mattoso, G. M. Glenn, E. S. Medeiros, “Effect of solvent on the physical and morphological properties of poly(Lactic Acid) nanofibers obtained by solution blow spinning,” J. Eng. Fibers & Fabrics, vol. 9 (4), pp. 117-125, Dec. 2014.

S. Jia, L. Zhao, X. Wang, Y. Chen, H. Pan, L. Han, H. Zhang, L. Dong, H. Zhang, “Poly(lactic acid) blends with excellent low temperature toughness: A comparative study on poly (lactic acid) blends with different toughening agents,” Int. J. Biological Macromol., vol. 201, pp. 662–675, Mar. 2022.

M. Hortós, M. Viñas, S. Espino, J. J. Bou, “Influence of temperature on high molecular weight poly(lactic acid) stereocomplex formation,” eXPRESS Polym. Lett., vol. 13 (2), pp. 123–134, Sep. 2019.

N. Msuya, A. K. Temu, R. J. A. Minja, “Effect of temperature, catalyst concentration and time, on polylactic acid production from sisal boles juice by ring open polymerization,” Tanzania J. Eng. & Technol., vol. 41 (2), pp. 70-81, Jun. 2022.

B. W. Chieng, N. A. Ibrahim, W. M. Z. W. Yunus, “Optimization of tensile strength of poly(lactic acid)/graphene nanocomposites using response surface methodology,” Polym.-Plastics Technol. & Eng., vol. 51 (8), pp. 791–799, Jun. 2012.




DOI: http://dx.doi.org/10.12962/j2964710X.v5i1.19350

Refbacks

  • There are currently no refbacks.


Creative Commons License
Journal of Fundamentals and Applications of Chemical Engineering (JFAChE) by Direktorat Riset dan Pengabdian kepada Masyarakat (DRPM), Institut Teknologi Sepuluh Nopember (ITS), Surabaya is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/jts.