Digital Terrain Model LiDAR untuk Perhitungan Volume dan Analisis Kerawanan Banjir di Wilayah Lumpur Sidoarjo
Abstract
Keywords
Full Text:
PDFReferences
Akbari, A. M., & Hariyanto, T. (2012). Perhitungan volume semburan dan sebaran lumpur Sidoarjo dengan citra ikonos multi temporal 2011. Tugas Akhir, Institut Teknologi Sepuluh Nopember, Teknik Geomatika, Surabaya.
Arbeck. (2015). The difference between digital surface model (DSM) and digital terrain models (DTM) when talking about digital elevation models (DEM). Dipetik Januari 16, 2023, dari Wikimedia Commons: https://commons.wikimedia.org/wiki/File:The_difference_between_Digital_Surface_Model_(DSM)_and_Digital_Terrain_Models_(DTM)_when_talking_about_Digital_Elevation_models_(DEM).svg
Aruga, K., Sessions, J., & Akay, A. E. (2004). Application of an airborne laser scanner to forest road design with accurate earthwork volumes. Journal of Forest Research, 10(2), 113-123. doi: 10.1007/s10310-004-0116-9
ASPRS. (2008). LAS Specification Version 1.2.
Brabb, E. E. (1984). Innovative approaches to landslide hazard and risk mapping. Fourth International Symposium on Landslides, 1, hal. 307-324. Toronto.
Carter, W., Shrestha, R., Tuell, G., Bloomquist, D., & Sartori, M. (2001). Airborne laser swath mapping shines new light on earth's topography. Eos, Transactions American Geophysical Union, 82, 549-555. doi:https://doi.org/10.1029/01EO00321
Firdaus, Z. M. (2020). Pemodelan kota tiga dimensi menggunakan data LiDAR dan foto udara dengan metode semi automatis (Studi kasus: Area Pakuwon Trade Center, Kota Surabaya). Tugas Akhir, Institut Teknologi Sepuluh Nopember, Teknik Geomatika, Surabaya. Diambil kembali dari http://repository.its.ac.id/id/eprint/77870
Geospasial. (2023, November 2023). Indonesia Geospasial. Diambil kembali dari https://www.indonesia-geospasial.com/
Ghilani, C. D., & Wolf, P. R. (2012). Elementary surveying: An introduction to geomatics (13th Edition ed.). Upper Saddle River, New Jersey: Pearson Education, Inc.
Guth, P. L. (2018). What should a bare earth digital terrain model (DTM) portray? United States Naval Academy, Department of Oceanograph. Annapolis: PeerJ Preprints. doi:10.7287/peerj.preprints.27053v1
Hirt, C. (2015). Digital terrain models. Dalam M. G. Sideris (Penyunt.), Encyclopedia of Geodesy. Springer Cham. doi:https://doi.org/10.1007/978-3-319-02370-0_31-1
Khalil, R. (2018). Surveying: Volume calculation. King Abdul Aziz University, Department of Landscape Architecture, Jeddah.
Kilian, J., Haala, N., & Englich, M. (1996). Capture and evaluation of airborne laser data. International Archives of Photogrammetry and Remote Sensing, 31(3), 383-338.
Kobler, A., Pfeifer, N., Ogrinc, P., Todorovski, L., Oštir, K., & Džeroski, S. (2007). Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sensing of Environment, 108(1), 9-23. doi:10.1016/j.rse.2006.10.013
Liu, X. (2008). Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography: Earth and Environment, 32(1), 31–49. doi:https://doi.org/10.1177/0309133308089496
Petrie, G., & Toth, C. K. (2008). Introduction to laser ranging, profiling, and scanning. Dalam J. Shan, & C. K. Toth, Topographic Laser Ranging and Scanning: Principles and Processing, Second Edition. Boca Raton: CRC Press. doi:10.1201/9781420051438.ch1
Pfeifer, N., Höfle, B., Briese, C., Rutzinger, M., & Haring, A. (2008). Analysis of the backscattered energy in terrestrial laser scanning data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(B5), 1045-1052.
Pusat Pengendalian Lumpur Sidoarjo (PPLS). (2020). Pengendalian lumpur Sidoarjo. Surabaya: Kementerian Pekerjaan Umum dan Perumahan Rakyat. Direktorat Jenderal Sumber Daya Air.
Puspita, B. D., & Sudaryatno. (2013). Estimasi sedimen lahar dingin di sebagian Kali Gendol Gunung Merapi menggunakan FUFK dan LiDAR. Universitas Gadjah Mada, Fakultas Geografi, Sleman.
Schenk, T. (2005). Introduction to photogrammetry. The Ohio State University, Department of Civil and Environmental Engineering and Geodetic Science, Columbus.
Setyaningrum, P. (2022, Januari 26). Lumpur Lapindo: Penyebab, dampak, ganti rugi, hingga temuan “harta karun” logam tanah jarang. Kompas.com. Dipetik Desember 27, 2022, dari Kompas.com: https://surabaya.kompas.com/read/2022/01/26/205822478/lumpur-lapindo-penyebab-dampak-ganti-rugi-hingga-temuan-harta-karun-logam?
Sukojo, B. M. (2012). Penginderan jauh (dasar teori dan terapan). Surabaya.
Surjoatmodjo, M. I. (2019). Analisis potensi pergerakan arah aliran banjir lumpur untuk menunjang kegiatan mitigasi bencana (Studi kasus: Lumpur Sidoarjo Kecamatan Porong dan Tanggulangin). Tugas Akhir, Institut Teknologi Sepuluh Nopember, Teknik Geomatika, Surabaya.
Taufik, M., Khomsin, K., Pratomo, D. G., & Widyasari, M. (2009). Digital elevation model (DEM) aster untuk menghintung volume lumpur Lapindo. Geoid, 4 (2), 166-170. doi:http://dx.doi.org/10.12962/j24423998.v4i2.7316
Wahyono, E. B., & Suhattanto, M. A. (2019). Survey Satelit Pertanahan. Yogyakarta: Sekolah Tinggi Pertanahan Nasional.
Widodo, B. T., & Hariyanto, T. (2016). Visualisasi perubahan volume dan elevasi permukaan lumpur dengan citra satelit resolusi tinggi temporal untuk monitoring lumpur Sidoarjo. Institut Teknologi Sepuluh Nopember, Teknik Geomatika, Surabaya. doi:10.12962/j23373539.v5i2.17385
Yuwono. (2005). Pendidikan dan pelatihan (diklat) teknis pengukuran dan pemetaan kota: BAB XV. Volume. Institut Teknologi Sepuluh Nopember, Teknik Geomatika, Surabaya.
Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., & Yan, G. (2016). An easy-to-use airborne LiDAR data filtering method based on cloth simulation. (P. D. Shan, & P. D. Hyyppä, Penyunt.) Remote Sensing, 8(6), 501. doi:10.3390/rs8060501
DOI: http://dx.doi.org/10.12962/j24423998.v19i1.18610
Refbacks
- There are currently no refbacks.
Geoid Journal of Geodesy and Geomatics by Department of Geomatics Engineering - ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.