Hubungan Dual Polametric SAR Band – C dan Landsat 8 untuk Identifikasi Potensi Kekeringan

Hikmah Fajar Assidiq, Catur Aries Rokhmana

Abstract


Kekeringan merupakan salah satu bencana krusial dan kompleks yang dapat menimbulkan kerugian material dan immaterial. Kekeringan di indonesia dikategorikan beberapa jenis meliputi Kekeringan Pertanian, Kekeringan Meterologis, dan kekeringan Hidrologi. Kekeringan pertanian merupakan kondisi dimana adanya penurunan kandungan air di dalam tanah. Kondisi tersebut akan berdampak pada tumbuhan dan atau tutupan lahan sehingga diperlukan tindakan preventif. Tindakan preventif dilakukan dengan cepat, efektif dan efisien sehingga pendekatan dengan pola dinamis sangat diperlukan. Pendekatan pola dinamis dilakukan dengan dengan metode yang dapat dilakukan setiap waktu. Penggunaan penginderaan jauh sensor aktif dapat menjadi solusi melalui pemantaaun setiap waktu secara dinamis. Salah satunya yaitu satelit dengan sensor radar, yaitu Sentinel 1. Sentinel 1A memiliki gelombang band C. Polarisasi pada citra Sentinel 1 memiliki bentuk dual-pol yang terdiri dari VV dan VH atau HH dan HV. Kombinasi polariasi memiliki potensi untuk digunakan identifikasi kekeringan. Metode yang dapat digunakan yaitu Radar Vegetation Index. Radar Vegetation Index dikembangkan dari algoritma NDVI. Klasifikasi kekeringan RVI dikembangkan dari analisis regresi hasil NDVI Landsat 8 dengan hasil RVI. Penelitian ini bertujuan untuk mengkaji pemanfaatan data SAR untuk identifikasi kekeringan dengan menghubungkan Dual Polametric SAR Band – C dan Landsat 8. Hasil penelitian bahwa NDVI memiliki Koefesien determinasi dengan RVI sebesar 0.2981.

Drought is a disastrous and complex disaster that can cause material and immaterial losses. The drought in Indonesia is categorized by several types including Agricultural Drought, Meteorological Drought, and Hydrological Drought. Agricultural drought is a condition where there is a decrease in water content in the soil. These conditions will have an impact on vegetation and / or land cover so preventive action is needed. Preventive action is carried out quickly, effectively and efficiently so that an approach with a dynamic pattern is needed. The dynamic pattern approach is done by a method that can be done any time. The use of Active Sensor remote sensing can perform monitoring at any time and dynamically. One of the satellites with radar sensors is Sentinel 1A. Sentinel 1A has a C band wave. Polarization in the Sentinel-1 image has a dual-pol form consisting of VV and VH or HH and HV. The Polarization combination has the potential to measure drought. The method that can be used is the Vegetation Radar Index. The radar vegetation index is developed from the NDVI algorithm. The RVI Drought Classification is made by maintaining the relationship between the NDVI Landsat 8 results and the RVI results. This study aims to examine the use of SAR data for drought identification with the relationship between Dual Polametric SAR Band - C and Landsat 8. The results explain that NDVI has a coefficient of determination with an RVI of 0.2981.

Keywords


Kekeringan, Sentinel 1A, RVI

Full Text:

PDF

References


Abdel-Hamid, A., Dubovyk, O., Graw, V., & Greve, K. (2020). Assessing the impact of drought stress on grasslands using multi-temporal SAR data of Sentinel-1: a case study in Eastern Cape, South Africa. European Journal of Remote Sensing, 00(00), 1–14. https://doi.org/10.1080/22797254.2020.1762514

Amriyah, Q., Arief, R., Dyatmika, H. S., & Maulana, R. (2019). Analysis of Comparison of Level-1 Data Sentinel 1A / B (SLC and GRD Data) Using SNAP and GAMMA Software. Seminar Nasional Penginderaan Jauh Ke-6 Tahun 2019 Analisis, 533–543.

Arief, M., Anggraini, N., Adawiah, S. W., Hartuti, M., & Suwargana, N. (2017). Aplikasi Data Satelit Radar Sentinel-1A Guna Deteksi Hutan Mangrove Studi Kasus : Segara Anakan , Kabupaten Cilacap Application of Satellite Radar Sentinel 1a Data for Mangrove Forest Detection Case Study : Segara Anakan , Cilacap District. 1982, 277–289.

Atmaja, P. F. A. S. A. A. Y. A. (2016). Climate regionalization for main production areas of Indonesia: Case study of West Java. Journal of Physics: Conference Series, 755(1). https://doi.org/10.1088/1742-6596/755/1/011001

Bakker, W. H., Gieske, A. S. M., Gorte, B. G. H., Grabmaier, K. A., Hecker, C. A., Horn, J. A., Huurneman, G. C., Janssen, L. L. F., Kerle, N., Meer, F. D. van der, Parodi, G. N., Pohl, C., Prakash, A., Reeves, C. V., Ruitenbeek, F. J. van, Tempfli, K., Weir, M. J. C., & Woldai, T. (2003). Principles of Remote Sensing. 4, 522–525.

Belayneh, A., Adamowski, J., & Khalil, B. (2016). Short-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet transforms and machine learning methods. Sustainable Water Resources Management, 2(1), 87–101. https://doi.org/10.1007/s40899-015-0040-5

Charbonneau, Trudel, F. (2005). Use of Dual Polarization and Multi-Incidence SAR for soil permeability mapping. In Proceedings of the 2005 Advanced Synthetic Aperture Radar (ASAR) Workshop.

Djalante, R., & Thomalla, F. (2012). Disaster risk reduction and climate change adaptation in Indonesia: Institutional challenges and opportunities for integration. International Journal of Disaster Resilience in the Built Environment, 3(2), 166–180. https://doi.org/10.1108/17595901211245260

Fadholi, A. (2013). Studi Dampak El Nino Dan Indian Ocean Dipole (Iod) Terhadap Curah Hujan Di Pangkalpinang. Jurnal Ilmu Lingkungan, 12(2), 43. https://doi.org/10.14710/jil.11.1.43-50

Fadilla, L., Subiyanto, S., & Suprayogi, A. (2017). Jurnal Geodesi Undip Oktober 2017. Analisis Arah Dan Prediksi Persebaran Fisik Wilayah Kota Semarang Tahun 2029 Menggunakan Sistem Informasi Geografis Dan CA Markov Model, 6(02), 517–525.

Filipponi, F. (2019). Sentinel-1 GRD Preprocessing Workflow. Proceedings, 18(1), 11. https://doi.org/10.3390/ecrs-3-06201

Ghaleb, F., Mario, M., & Sandra, A. N. (2015). Regional landsat-based drought monitoring from 1982 to 2014. Climate, 3(3), 563–577. https://doi.org/10.3390/cli3030563

Jaber, S. M. (2018). Landsat-based vegetation abundance and surface temperature for surface urban heat island studies: the tale of Greater Amman Municipality. Annals of GIS, 24(3), 195–208. https://doi.org/10.1080/19475683.2018.1471519

Kumar, D., Rao, S., & Sharma, J. R. (2013). Radar Vegetation Index as an Alternative to NDVI for Monitoring of Soyabean and Cotton. Proceedings of the XXXIII INCA International Congress (Indian Cartographer), 19-21 September, 2013, Jodhpur, India, September 2013, 91–96.

Kustandiyo, H., Sukojo, B. M., & Parwati, E. (2014). Studi Tingkat Kerapatan Mangrove Menggunakan Indeks Vegetasi. Geoid, 9(2), 101. https://doi.org/10.12962/j24423998.v9i2.738

Latuamury, B., & Resesi, K. (2016). Pengaruh Kerapatan Vegetasi Penutup Lahan terhadap Karakteristik Resesi Hidrograf pada Beberapa Subdas di Propinsi Jawa Tengah Dan Propinsi DIY. Majalah Geografi Indonesia, 26(2), 98–118. https://doi.org/10.22146/mgi.13418

Lilik, K., Yunus, R., Muhammd, robi amir, & Narwawi, P. (2011). Indeks Kerawanan Bencana di Indonesia. 1–226.

Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J. M., McNairn, H., & Rao, Y. S. (2020). Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sensing of Environment, 247(January), 111954. https://doi.org/10.1016/j.rse.2020.111954

Nanzad, L., Zhang, J., Tuvdendorj, B., Nabil, M., Zhang, S., & Bai, Y. (2019). NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. Journal of Arid Environments, 164(May 2018), 69–77. https://doi.org/10.1016/j.jaridenv.2019.01.019

Nasirzadehdizaji, R., Sanli, F. B., Abdikan, S., Cakir, Z., Sekertekin, A., & Ustuner, M. (2019). Sensitivity analysis of multi-temporal Sentinel-1 SAR parameters to crop height and canopy coverage. Applied Sciences (Switzerland), 9(4). https://doi.org/10.3390/app9040655

Rousta, I., Olafsson, H., Moniruzzaman, M., Zhang, H., Liou, Y. A., Mushore, T. D., & Gupta, A. (2020). Impacts of drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan. Remote Sensing, 12(15). https://doi.org/10.3390/RS12152433

Septiana, B., Wijaya, A. P., & Suprayogi, A. (2017). Metode SAR Simulation Terrain Correction Menggunakan Data SAR SENTINEL – 1. 6, 148–157.

Suwarsono, ., & Khomarudin, M. R. (2014). Detecting the Spatial Distribution of Settlements on Volcanic Region Using Image Landsat-8 Oli Imagery. International Journal of Remote Sensing and Earth Sciences (IJReSES), 11(1), 63. https://doi.org/10.30536/j.ijreses.2014.v11.a2602

The European Space Agency. (2014). Sentinel-1 SAR Technical Guide. https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar

U.S. Geological Survey. (2016). Landsat 8 Data Users Handbook. Nasa, 8(June), 97. https://landsat.usgs.gov/documents/Landsat8DataUsersHandbook.pdf

West, H., Quinn, N., & Horswell, M. (2019). Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sensing of Environment, 232(November 2018), 111291. https://doi.org/10.1016/j.rse.2019.111291

Yunjin Kim; van Zyl. (2009). A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data. IEEE, 2519–2527.




DOI: http://dx.doi.org/10.12962/j24423998.v16i2.8581

Refbacks

  • There are currently no refbacks.


Creative Commons License
Geoid Journal of Geodesy and Geomatics by Department of Geomatics Engineering - ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.