Hubungan Dual Polametric SAR Band – C dan Landsat 8 untuk Identifikasi Potensi Kekeringan
Abstract
Drought is a disastrous and complex disaster that can cause material and immaterial losses. The drought in Indonesia is categorized by several types including Agricultural Drought, Meteorological Drought, and Hydrological Drought. Agricultural drought is a condition where there is a decrease in water content in the soil. These conditions will have an impact on vegetation and / or land cover so preventive action is needed. Preventive action is carried out quickly, effectively and efficiently so that an approach with a dynamic pattern is needed. The dynamic pattern approach is done by a method that can be done any time. The use of Active Sensor remote sensing can perform monitoring at any time and dynamically. One of the satellites with radar sensors is Sentinel 1A. Sentinel 1A has a C band wave. Polarization in the Sentinel-1 image has a dual-pol form consisting of VV and VH or HH and HV. The Polarization combination has the potential to measure drought. The method that can be used is the Vegetation Radar Index. The radar vegetation index is developed from the NDVI algorithm. The RVI Drought Classification is made by maintaining the relationship between the NDVI Landsat 8 results and the RVI results. This study aims to examine the use of SAR data for drought identification with the relationship between Dual Polametric SAR Band - C and Landsat 8. The results explain that NDVI has a coefficient of determination with an RVI of 0.2981.
Keywords
Full Text:
PDFReferences
Abdel-Hamid, A., Dubovyk, O., Graw, V., & Greve, K. (2020). Assessing the impact of drought stress on grasslands using multi-temporal SAR data of Sentinel-1: a case study in Eastern Cape, South Africa. European Journal of Remote Sensing, 00(00), 1–14. https://doi.org/10.1080/22797254.2020.1762514
Amriyah, Q., Arief, R., Dyatmika, H. S., & Maulana, R. (2019). Analysis of Comparison of Level-1 Data Sentinel 1A / B (SLC and GRD Data) Using SNAP and GAMMA Software. Seminar Nasional Penginderaan Jauh Ke-6 Tahun 2019 Analisis, 533–543.
Arief, M., Anggraini, N., Adawiah, S. W., Hartuti, M., & Suwargana, N. (2017). Aplikasi Data Satelit Radar Sentinel-1A Guna Deteksi Hutan Mangrove Studi Kasus : Segara Anakan , Kabupaten Cilacap Application of Satellite Radar Sentinel 1a Data for Mangrove Forest Detection Case Study : Segara Anakan , Cilacap District. 1982, 277–289.
Atmaja, P. F. A. S. A. A. Y. A. (2016). Climate regionalization for main production areas of Indonesia: Case study of West Java. Journal of Physics: Conference Series, 755(1). https://doi.org/10.1088/1742-6596/755/1/011001
Bakker, W. H., Gieske, A. S. M., Gorte, B. G. H., Grabmaier, K. A., Hecker, C. A., Horn, J. A., Huurneman, G. C., Janssen, L. L. F., Kerle, N., Meer, F. D. van der, Parodi, G. N., Pohl, C., Prakash, A., Reeves, C. V., Ruitenbeek, F. J. van, Tempfli, K., Weir, M. J. C., & Woldai, T. (2003). Principles of Remote Sensing. 4, 522–525.
Belayneh, A., Adamowski, J., & Khalil, B. (2016). Short-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet transforms and machine learning methods. Sustainable Water Resources Management, 2(1), 87–101. https://doi.org/10.1007/s40899-015-0040-5
Charbonneau, Trudel, F. (2005). Use of Dual Polarization and Multi-Incidence SAR for soil permeability mapping. In Proceedings of the 2005 Advanced Synthetic Aperture Radar (ASAR) Workshop.
Djalante, R., & Thomalla, F. (2012). Disaster risk reduction and climate change adaptation in Indonesia: Institutional challenges and opportunities for integration. International Journal of Disaster Resilience in the Built Environment, 3(2), 166–180. https://doi.org/10.1108/17595901211245260
Fadholi, A. (2013). Studi Dampak El Nino Dan Indian Ocean Dipole (Iod) Terhadap Curah Hujan Di Pangkalpinang. Jurnal Ilmu Lingkungan, 12(2), 43. https://doi.org/10.14710/jil.11.1.43-50
Fadilla, L., Subiyanto, S., & Suprayogi, A. (2017). Jurnal Geodesi Undip Oktober 2017. Analisis Arah Dan Prediksi Persebaran Fisik Wilayah Kota Semarang Tahun 2029 Menggunakan Sistem Informasi Geografis Dan CA Markov Model, 6(02), 517–525.
Filipponi, F. (2019). Sentinel-1 GRD Preprocessing Workflow. Proceedings, 18(1), 11. https://doi.org/10.3390/ecrs-3-06201
Ghaleb, F., Mario, M., & Sandra, A. N. (2015). Regional landsat-based drought monitoring from 1982 to 2014. Climate, 3(3), 563–577. https://doi.org/10.3390/cli3030563
Jaber, S. M. (2018). Landsat-based vegetation abundance and surface temperature for surface urban heat island studies: the tale of Greater Amman Municipality. Annals of GIS, 24(3), 195–208. https://doi.org/10.1080/19475683.2018.1471519
Kumar, D., Rao, S., & Sharma, J. R. (2013). Radar Vegetation Index as an Alternative to NDVI for Monitoring of Soyabean and Cotton. Proceedings of the XXXIII INCA International Congress (Indian Cartographer), 19-21 September, 2013, Jodhpur, India, September 2013, 91–96.
Kustandiyo, H., Sukojo, B. M., & Parwati, E. (2014). Studi Tingkat Kerapatan Mangrove Menggunakan Indeks Vegetasi. Geoid, 9(2), 101. https://doi.org/10.12962/j24423998.v9i2.738
Latuamury, B., & Resesi, K. (2016). Pengaruh Kerapatan Vegetasi Penutup Lahan terhadap Karakteristik Resesi Hidrograf pada Beberapa Subdas di Propinsi Jawa Tengah Dan Propinsi DIY. Majalah Geografi Indonesia, 26(2), 98–118. https://doi.org/10.22146/mgi.13418
Lilik, K., Yunus, R., Muhammd, robi amir, & Narwawi, P. (2011). Indeks Kerawanan Bencana di Indonesia. 1–226.
Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J. M., McNairn, H., & Rao, Y. S. (2020). Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sensing of Environment, 247(January), 111954. https://doi.org/10.1016/j.rse.2020.111954
Nanzad, L., Zhang, J., Tuvdendorj, B., Nabil, M., Zhang, S., & Bai, Y. (2019). NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. Journal of Arid Environments, 164(May 2018), 69–77. https://doi.org/10.1016/j.jaridenv.2019.01.019
Nasirzadehdizaji, R., Sanli, F. B., Abdikan, S., Cakir, Z., Sekertekin, A., & Ustuner, M. (2019). Sensitivity analysis of multi-temporal Sentinel-1 SAR parameters to crop height and canopy coverage. Applied Sciences (Switzerland), 9(4). https://doi.org/10.3390/app9040655
Rousta, I., Olafsson, H., Moniruzzaman, M., Zhang, H., Liou, Y. A., Mushore, T. D., & Gupta, A. (2020). Impacts of drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan. Remote Sensing, 12(15). https://doi.org/10.3390/RS12152433
Septiana, B., Wijaya, A. P., & Suprayogi, A. (2017). Metode SAR Simulation Terrain Correction Menggunakan Data SAR SENTINEL – 1. 6, 148–157.
Suwarsono, ., & Khomarudin, M. R. (2014). Detecting the Spatial Distribution of Settlements on Volcanic Region Using Image Landsat-8 Oli Imagery. International Journal of Remote Sensing and Earth Sciences (IJReSES), 11(1), 63. https://doi.org/10.30536/j.ijreses.2014.v11.a2602
The European Space Agency. (2014). Sentinel-1 SAR Technical Guide. https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar
U.S. Geological Survey. (2016). Landsat 8 Data Users Handbook. Nasa, 8(June), 97. https://landsat.usgs.gov/documents/Landsat8DataUsersHandbook.pdf
West, H., Quinn, N., & Horswell, M. (2019). Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sensing of Environment, 232(November 2018), 111291. https://doi.org/10.1016/j.rse.2019.111291
Yunjin Kim; van Zyl. (2009). A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data. IEEE, 2519–2527.
DOI: http://dx.doi.org/10.12962/j24423998.v16i2.8581
Refbacks
- There are currently no refbacks.
Geoid Journal of Geodesy and Geomatics by Department of Geomatics Engineering - ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.