Bi-Edge Metric Dimension of Graphs
Abstract
Keywords
Full Text:
PDFReferences
Kelenc, A., Tratnik, N., and Yero, I.G.: Uniquely Identifying The Edge
of a Graph: The Edge Metric Dimension. Discrete Applied Mathematics.
Vol. 251, 204-220 (2018).
Santhakumaran, A.P., and Athisayanathan, S.: On Edge Detour Graphs. Discussiones Mathematicae Graph Theory, 30(1), 155-174 (2010).
Raghavendra, A., Sooryanarayana, B., and Hedge, C.: Bi-metric Dimension of Graphs. British Journal of Mathematics & Computer Science, 4(18), 2699-2714 (2014).
Sundusia, J. K. and Rinurwati: The Complement Bi-metric Dimension of Graphs. AIP Publishing, Vol. 2641 (2022).
Iswadi, H., Baskoro, E.T., Salman, A.N.M., and Simanjuntak, R.: The
Resolving Graph of Amalgamation of Cycles. Far East Journal of
Mathematical Sciences (FJMS), 41(1): 19-31 (2010).
Rinurwati., Sundusia, J.K., Haryadi, T.I., and Maharani, F.D.:The Complement Bimetric Dimension of Corona Graphs. AIP Conference Proceedings. (Pre-published).
Rinurwati., Suprajitno, H., and Slamin: On Metric Dimension of EdgeCorona Graphs. Far East Journal of Mathematical Sciences, 102(5), 965-978 (2017).
Santhakumaran, A.P., Titus, P., and Arumugam: The Vertex Detour
Number of a Graph. AKCE J. Graphs. Combin. 4(1): 99-112 (2007)
DOI: http://dx.doi.org/10.12962/j24775401.v10i1.20267
Refbacks
- There are currently no refbacks.
View My Stats
International Journal of Computing Science and Applied Mathematics by Pusat Publikasi Ilmiah LPPM, Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/ijcsam.