Modeling and Estimating GARCH-X and Realized GARCH Using ARWM and GRG Methods
Abstract
Keywords
Full Text:
PDFReferences
Nugroho, D. B., Kurniawati, D., Panjaitan, L. P., Kholil, Z., Susanto, B. and Sasongko, L. R., Empirical performance of GARCH, GARCH-M, GJR-GARCH and log-GARCH models for returns volatility, J. Phys. Conf. Ser., vol. 1307, no. 1, p. 012003, 2019.
Bollerslev, T., Generalized autoregressive conditional heteroskedasticity, J. Econom., vol. 31, no. 3, pp. 307-327, 1986.
Andersen, T. G. and Bollerslev, T., Answering the skeptics: Yes, standard volatility models do provide accurate forecasts, Int. Econ. Rev., vol. 39, no. 4, pp. 885-905, 1998.
Hansen, P. R., Huang, Z. and Shek, H. H., Realized GARCH: A joint model of returns and realized measures of volatility, J. Appl. Econom., vol. 26, no. 6, pp. 877-906, 2011.
Engle, R., New frontiers for ARCH models, J. Appl. Econom., vol. 17, no. 5, pp. 425-446, 2002.
Nugroho D. B., Wicaksono, B. A., Larwuy, L., GARCH-X(1,1) model allowing a non-linear function of the variance to follow an AR(1) process, Commun. Stat. Appl. Methods, vol. 30, no. 2, pp. 163-178, 2023.
Nugroho D. B., Wijaya, J., Setiawan, A., Modeling of returns volatility through EGARCH model using high-frequency data, J. Appl. Prob. Stat., vol. 18, no. 2, pp. 055-073, 2023.
Nugroho, D. B., Wibowo, H. and Saragih, A., Modeling daily return volatility through GJR(1,1) model and realized volatility measure, Thail. Stat., vol. 22, no. 1, pp. 50-62, 2024.
Barndorff-Nielsen, O. E, Hansen, P., Lunde, A. and Shephard, N., Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise, Econometrica, vol. 76, no. 6, pp. 1481-1536, 2008.
Dutta, A., Modelling volatility: Symmetric or asymmetric GARCH models, J. Stat. Adv. Theory Appl., vol. 12, no. 2, pp. 99-108, 2014.
Gerlach, W. and Wang, C., Forecasting risk via realized GARCH, incorporating the realized range, Quant. Financ., vol. 16, no. 4, pp. 501-511, 2016.
Olbrys, J. and Majewska, E., Asymmetry effects in volatility on the major European Stock Markets: the EGARCH based approach, Quant. Financ. Econ., vol. 1, no. 4, pp. 411-427, 2017.
Feng L. and Shi, Y., A simulation study on the distributions of disturbances in the GARCH model, Cogent Econ. Financ., vol. 5, no. 1, p. 1355503, 2017.
Abadie, J., Application of the GRG algorithm to optimal control problems, p. 181 in , Integer and Nonlinear Programming, Abadie, J., ed., North Holland, Amsterdam, 1970.
Lasdon, L. S., Fox, R. L. and M. W. Ratner, Nonlinear optimization using the generalized reduced gradient method, Recherche Operationnelle, vol. 8, no. 3, pp. 73-103, 1974.
Nawaz, M. N., Ali, A. S., Jaffar, S. T. A., Jafri, T. H., Oh, T. -M., Abdallah, M., Karam, S., Azab, M., Cost-based optimization of isolated footing in cohesive soils using generalized reduced gradient method, Build., vol. 12, p. 1646, 2022.
Elci, Alper, Calibration of groundwater vulnerability mapping using the generalized reduced gradient method, J. Contam. Hydrol., vol. 207, pp. 39-49, 2017.
Sakhaei, Z., Azin, R. and Osfouri, S., Assessment of empirical/theoretical relative permeability correlations for gasâoil/condensate systems, 1st Biennial Conference Persian Gulf Oil, Gas and Petrochemistry, Iran, 2016. Retrieved from https://www.researchgate.net/publication/304019498.
Mantell, J. B. and Lasdon, L. S., A GRG algorithm for econometric control problems, p. 581-597 in , Annals of Economic and Social Measurement, vol. 6, no. 5, National Bureau of Economic Research, Inc, 1977. Retrieved from https://EconPapers.repec.org/RePEc:nbr:nberch:10545.
Nugroho, D. B., Susanto, B., Prasetia, K. N. P. and Rorimpandey, R., Modeling of returns volatility using GARCH(1,1) model under Tukey transformations, J. Akuntansi Keuangan, vol. 21, no. 1, pp. 12-20, 2019.
Nugroho, D. B., Kurniawati, D., Panjaitan, L. P., Kholil, Z., Susanto, B. and Sasongko, L. R., GRG non-linear and ARWM methods for estimating the GARCH-M, GJR, and log-GARCH Models, J. Teori Aplikasi Matematika, vol. 6, no. 2, pp. 448-460, 2022.
Nugroho, D. B., Mahatma, T. and Pratomo, Y., GARCH models under power transformed returns: Empirical evidence from international stock indices, Austrian J. Stat., vol. 50, no. 4, 1-18, 2021.
Le, H., Pham, U., Nguyen, P. and Pham, T. B., Improvement on Monte Carlo estimation of HPD intervals, Commun. Stat. Simul. Comput., vol. 49, no. 8, pp. 2164-2180, 2020.
Kubara, M. and Kopczewska, K., Akaike information criterion in choosing the optimal k-nearest neighbours of the spatial weight matrix, Spat. Econ. Anal., vol. 19, no. 1, pp. 73-91, 2023.
Hansen, P. H. and Lunde A., A forecast comparison of volatility models: does anything beat a GARCH(1,1)? J. Appl. Econom., vol. 20, no. 7, pp. 873-889, 2005.
Jafari, G. R., Bahraminasab, A. and Norouzzadeh P., Why does the standard GARCH(1,1) model work well? Int. J. Modern Phys. C, vol. 18, no. 07, pp. 1223-1230, 2007.
Nugroho, D. B., Susanto, B. and Rosely, M. M. M., Penggunaan MS Excel untuk estimasi model GARCH(1,1), J. Matematika Integratif, vol. 14, no. 2, pp. 71-82, 2018.
Kim, N., A Jarque-Bera type test for multivariate normality based on second-power skewness and kurtosis, Commun. Stat. Appl. Methods, vol. 28, no. 5, pp. 463-475, 2021.
Ardia, D. and Hoogerheide, L. F., Bayesian estimation of the GARCH(1,1) model with Student-t innovations, R J., vol. 2, no. 2, pp. 41-47, 2010.
Deschamps, P. J., A flexible prior distribution for Markov switching autoregressions with Student-t errors, J. Econom., vol. 133, no. 1, pp. 153-190, 2006.
DOI: http://dx.doi.org/10.12962/j24775401.v11i1.20333
Refbacks
- There are currently no refbacks.
View My Stats

International Journal of Computing Science and Applied Mathematics by Pusat Publikasi Ilmiah LPPM, Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/ijcsam.