Effect of Single Slat and Double Slat on Aerodynamic Performance of NACA 4415

James Julian, Waridho Iskandar, Fitri Wahyuni, Armansyah Armansyah, Ferdyanto Ferdyanto

Abstract


This study uses a Computational Fluid Dynamics (CFD) approach. The main object in this study is NACA 4415 with slat variations. The airfoil used as the slat is Eppler 421. Reynolds number in this study is 3Í106. This study uses an unstructured mesh with a triangular cell shape with 137824 elements. The use of slats can improve the aerodynamic performance of NACA 4415. NACA 4415 without slat stalled at AoA=16º. Stall on airfoils with a single slat and double slat occurred at AoA=20º. Slat can increase Cl in NACA 4415; however, the difference in Cl increase is not much different when using a single slat or double slat. An airfoil with a single slat, on average, can increase Cl by 20.9129%. The average increase in Cl for an airfoil with a double slat is 25.6878%. Single slat and double slat increase Cd. A single slat increased Cd with an average increase of 26.1109%, and the average increase in Cd for airfoils with double slat was 54.6152%. Single slat can produce a better Cl to Cd ratio than double slat, but the optimum AoA of double slat is 1º higher than single slat. Visualization of fluid flow at AoA=16° shows the fluid flow separation in the airfoil without a slat. The fluid flow separation can be handled well when NACA 4415 is given a single slat or double slat.


Keywords


airfoil; Cd; CFD; Cl; double slat; NACA 4415; single slat

Full Text:

PDF

References


Sarjito, N. Aklis, and T. Hartanto, “An optimization of flap and slat angle airfoil NACA 2410 using CFD,” AIP Conf. Proc., vol. 1831, no. April, 2017, doi: 10.1063/1.4981179.

J. Julian, Harinaldi, Budiarso, C. C. Wang, and M. J. Chern, “Effect of plasma actuator in boundary layer on flat plate model with turbulent promoter,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., vol. 232, no. 16, pp. 3001–3010, 2018, doi: 10.1177/0954410017727301.

S. Sudhakar and N. Karthikeyan, “Flow Separation Control on a NACA-4415 Airfoil at Low Reynolds Number,” Lect. Notes Mech. Eng., no. April, pp. 323–334, 2021, doi: 10.1007/978-981-15-5183-3_35.

T. Yavuz, E. Koç, B. Kilkiş, T. Erol, C. Balas, and T. Aydemir, “Performance analysis of the airfoil-slat arrangements for hydro and wind turbine applications,” Renew. Energy, vol. 74, pp. 414–421, 2015, doi: 10.1016/j.renene.2014.08.049.

M. Schramm, B. Stoevesandt, and J. Peinke, “Simulation and Optimization of an Airfoil with Leading Edge Slat,” J. Phys. Conf. Ser., vol. 753, no. 2, 2016, doi: 10.1088/1742-6596/753/2/022052.

Harinaldi, A. S. Wibowo, J. Julian, and Budiarso, “The comparison of an analytical, experimental, and simulation approach for the average induced velocity of a dielectric barrier discharge (DBD),” AIP Conf. Proc., vol. 2062, no. 1, p. 20027, 2019, doi: 10.1063/1.5086574.

J. Julian, R. F. Karim, Budiarso, and Harinaldi, “Review: Flow control on a squareback model,” Int. Rev. Aerosp. Eng., vol. 10, no. 4, pp. 230–239, 2017, doi: 10.15866/irease.v10i4.12636.

A. Choudhry, M. Arjomandi, and R. Kelso, “A study of long separation bubble on thick airfoils and its consequent effects,” Int. J. Heat Fluid Flow, vol. 52, pp. 84–96, 2015, doi: 10.1016/j.ijheatfluidflow.2014.12.001.

F. C. Megawanto, Harinaldi, Budiarso, and J. Julian, “Numerical analysis of plasma actuator for drag reduction and lift enhancement on NACA 4415 airfoil,” AIP Conf. Proc., vol. 2001, 2018, doi: 10.1063/1.5049992.

Budiarso, Harinaldi, Karim, Riza Farrash, and Julian, James, “Drag reduction due to recirculating bubble control using plasma actuator on a squareback model,” MATEC Web Conf., vol. 154, p. 1108, 2018, doi: 10.1051/matecconf/201815401108.

Budiarso, Harinaldi, E. . Kosasih, R. . Karim, and J. Julian, “Drag reduction by combination of flow control using inlet disturbance body and plasma actuator on cylinder model,” J. Mech. Eng. Sci., vol. 13, no. 1, pp. 4503–4511, 2019.

J. Julian, Harinaldi, Budiarso, R. Difitro, and P. Stefan, “The effect of plasma actuator placement on drag coefficient reduction of Ahmed body as an aerodynamic model,” Int. J. Technol., vol. 7, no. 2, pp. 306–313, 2016, doi: doi.org/10.14716/ijtech.v7i2.2994.

Harinaldi, Budiarso, J. Julian, and M. N. Rabbani, “The effect of plasma actuator on the depreciation of the aerodynamic drag on box model,” AIP Conf. Proc., vol. 1737, 2016, doi: 10.1063/1.4949292.

Harinaldi, M. D. Kesuma, R. Irwansyah, J. Julian, and A. Satyadharma, “Flow control with multi-DBD plasma actuator on a delta wing,” Evergreen, vol. 7, no. 4, pp. 602–608, 2020, doi: 10.5109/4150513.

H. Harinaldi, B. Budiarso, F. C. Megawanto, R. F. Karim, N. T. Bunga, and J. Julian, “Flow Separation Delay on NACA 4415 Airfoil Using Plasma Actuator Effect,” Int. Rev. Aerosp. Eng., vol. 12, no. 4, pp. 180–186, 2019, doi: doi.org/10.15866/irease.v12i4.16219.

S. M. A. Aftab, A. S. M. Rafie, N. A. Razak, and K. A. Ahmad, “Turbulence model selection for low reynolds number flows,” PLoS One, vol. 11, no. 4, pp. 1–15, 2016, doi: 10.1371/journal.pone.0153755.

A. J. Lew, G. C. Buscaglia, and P. M. Carrica, “A Note on the Numerical Treatment of the k-epsilon Turbulence Model,” Int. J. Comut. Fluid Dyn., vol. 14, no. 3, pp. 201–209, 2001, doi: 10.1080/10618560108940724.

E. N. Jacobs and A. Sherman, “Airfoil section characteristics as affected by variations of the Reynolds number,” Tech. rep., Washington. D.C Natl. Advis. Comm. Aeronaut., no. 586, pp. 227–259, 1939.




DOI: http://dx.doi.org/10.12962/j25481479.v7i2.12875

Refbacks

  • There are currently no refbacks.


Abstracted / Indexed by:
      
  

 

 

 

 

 

P-ISSN: 2541-5972   

E-ISSN: 2548-1479

 

Lisensi Creative Commons

IJMEIR journal published by  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/