Optimization of Ship Stability through Response Surface Methodology: Enhancing Safety and Performance via Cross Curve Analysis

Kukuh Izatullah, Muhammad Arif Budiyanto, Wanda Rulita Sari

Abstract


Optimizing the cross curves of ship stability through the application of Response Surface Methodology (RSM) requires a complex interplay between factors such as hull shape, beam, and draft significantly influences a ship's stability, which is crucial for the safety of the crew, passengers, and cargo. By employing RSM, this research systematically examines these factors, developing a second-order polynomial model to describe their relationship with stability metrics. The experiments were conducted using Design-Expert 13® software, which facilitated the design of experiments, data collection, model development, and validation. The optimized model revealed that while the overall impact of individual factors might not be significant, their combined interactions provide a robust predictive capability for ship stability. The results demonstrated that the optimized input variables led to improved stability outcomes, minimizing moment trim while maximizing longitudinal and transverse metacentric heights, thereby ensuring better performance and safety across various sea conditions.

Keywords


Ship Stability; Response Surface Methodology; Cross Curve Optimization; Metacentric Height; Design of Experiments

Full Text:

PDF

References


L. Wang, H. Yu, X. Wei, and H. B. T.-R. M. in C. Liu Molecular Sciences and Chemical Engineering, “Applications – Transportation | Ships: Fuel cells, batteries,” Elsevier, 2023. doi: https://doi.org/10.1016/B978-0-323-96022-9.00135-3.

L. Meng, X. Wang, J. He, and C. Han, “Ship allocation considering energy type and transportation preference: A variational inequality approach,” Adv. Eng. Informatics, vol. 59, no. September 2023, p. 102291, 2024, doi: 10.1016/j.aei.2023.102291.

A. Godet, J. N. Nurup, J. T. Saber, G. Panagakos, and M. B. Barfod, “Operational cycles for maritime transportation: A benchmarking tool for ship energy efficiency,” Transp. Res. Part D Transp. Environ., vol. 121, no. June, p. 103840, 2023, doi: 10.1016/j.trd.2023.103840.

M. Xu, X. Ma, Y. Zhao, and W. Qiao, “A Systematic Literature Review of Maritime Transportation Safety Management,” J. Mar. Sci. Eng., vol. 11, no. 12, 2023, doi: 10.3390/jmse11122311.

A. Morska, P. Krata, W. Wawrzyński, W. Więckiewicz, and J. Jachowski, “Ship ’ s ballast tanks size and dimensions review for the purpose of model research into the liquid sloshing phenomenon,” Sci. Journals Marit. Univ. Szczecin, vol. 29, no. 101, pp. 88–94, 2012.

A. Malakhov, A. Palagin, I. Maslov, and R. Gudilko, “Improvement of ship ballasting system,” Technol. Audit Prod. Reserv., vol. 4, no. 1(36), pp. 25–29, 2017, doi: 10.15587/2312-8372.2017.109087.

A. Kurniawan, Hardianto, E. S. Koenhardono, and I. R. Kusuma, “Modeling and control of ballast system to improve stability of catamaran boat,” ICAMIMIA 2015 - Int. Conf. Adv. Mechatronics, Intell. Manuf. Ind. Autom. Proceeding - conjunction with Ind. Mechatronics Autom. Exhib. IMAE, vol. 2015, no. Icamimia, pp. 202–204, 2016, doi: 10.1109/ICAMIMIA.2015.7508032.

Y. Hu, J. Tang, S. Xue, and S. Liu, “Stability criterion and its calculation for sail-assisted ship,” Int. J. Nav. Archit. Ocean Eng., vol. 7, no. 1, pp. 1–9, 2015, doi: 10.2478/IJNAOE-2015-0001.

J. Womack and B. Johnson, “A Guide to Fishing Vessel Stability,” Soc. Nav. Archit. Mar. Eng., 2017.

M. Vidić and I. Bačkalov, “An analysis of stability requirements for large inland passenger ships,” Ocean Eng., vol. 261, no. March, 2022, doi: 10.1016/j.oceaneng.2022.112148.

J. Lian et al., “Effects of damping plate on the motion response of transport ships under waves,” Appl. Ocean Res., vol. 134, no. January, p. 103507, 2023, doi: 10.1016/j.apor.2023.103507.

E. Shivachev, M. Khorasanchi, S. Day, and O. Turan, “Impact of trim on added resistance of KRISO container ship (KCS) in head waves: An experimental and numerical study,” Ocean Eng., vol. 211, no. April, p. 107594, 2020, doi: 10.1016/j.oceaneng.2020.107594.

K. Lapa, “Assessment of the stability of passenger ships in coastal navigation in case of lacking ship geometry data,” Trans. Marit. Sci., vol. 9, no. 2, pp. 150–160, 2020, doi: 10.7225/toms.v09.n02.002.

V. Wilczynski and W. J. Diehlt, “An Alternative approach to determine a vessel’s center of gravity: the center of buoyancy method,” Ocean Eng., vol. 22, no. 6, pp. 563–570, 1995.

Y. Jiang, M. Wang, J. Bai, Y. Sun, and J. Li, “Effects of outrigger configuration on trimaran stability in longitudinal waves,” Ocean Eng., vol. 280, no. March, p. 114500, 2023, doi: 10.1016/j.oceaneng.2023.114500.

J. C. Lee, S. C. Shin, and S. Y. Kim, “An optimal design of wind turbine and ship structure based on neuro-response surface method,” Int. J. Nav. Archit. Ocean Eng., vol. 7, no. 4, pp. 750–769, 2015, doi: 10.1515/ijnaoe-2015-0053.

M. Arai and T. Shimizu, “Optimization of the Design of Ship Structures Using Response Surface Methodology,” Y.-S. Wu, W.-C. Cui, and G.-J. B. T.-P. D. of S. and O. F. S. Zhou, Eds., Oxford: Elsevier Science Ltd, 2001, pp. 331–339. doi: https://doi.org/10.1016/B978-008043950-1/50042-9.

X. Chen, T. Takami, M. Oka, Y. Kawamura, and T. Okada, “Stochastic wave spectra estimation (SWSE) based on response surface methodology considering uncertainty in transfer functions of a ship,” Mar. Struct., vol. 90, no. February, p. 103423, 2023, doi: 10.1016/j.marstruc.2023.103423.

A. Soleimani, M. Akbari, A. Karimipour, A. H. Meghdadi Isfahani, and R. Nosouhi, “Investigation the effect of dissimilar laser welding parameters on temperature field, mechanical properties and fusion zone microstructure of inconel 600 and duplex 2205 stainless steel via response surface methodology,” Heliyon, vol. 10, no. 4, p. e26010, 2024, doi: 10.1016/j.heliyon.2024.e26010.

A. K. Sahu, N. K. Sahu, A. K. Sahu, M. S. Rajput, and H. K. Narang, “Modeling the predictive values of ultimate tensile strength in welded joint by response surface methodology,” Mater. Today Proc., vol. 44, pp. 3110–3114, 2021, doi: 10.1016/j.matpr.2021.02.798.

H. Öktem, T. Erzurumlu, and H. Kurtaran, “Application of response surface methodology in the optimization of cutting conditions for surface roughness,” J. Mater. Process. Technol., vol. 170, no. 1–2, pp. 11–16, 2005, doi: 10.1016/j.jmatprotec.2005.04.096.

R. Madesh and G. K. K., “Multi-layer additive manufacturing on nickel-based superalloy by optimization of pulsed mode process parameters of single-layer bead geometry,” Mater. Today Commun., vol. 37, no. July, p. 107463, 2023, doi: 10.1016/j.mtcomm.2023.107463.

S. J. S. Chelladurai, K. Murugan, A. P. Ray, M. Upadhyaya, V. Narasimharaj, and S. Gnanasekaran, “Optimization of process parameters using response surface methodology: A review,” Mater. Today Proc., vol. 37, no. Part 2, pp. 1301–1304, 2020, doi: 10.1016/j.matpr.2020.06.466.

J. Wu, P. P. Gao, and X. Gao, “Optimization of Response Surface Methodology for Pulsed Laser Welding of 316L Stainless Steel to Polylactic Acid,” Metals (Basel)., vol. 13, no. 2, pp. 1–16, 2023, doi: 10.3390/met13020214.

N. A. Imhansoloeva, J. I. Achebo, K. Obahiagbon, J. O. Osarenmwinda, and C. E. Etin-Osa, “Optimization of the Deposition Rate of Tungsten Inert Gas Mild Steel Using Response Surface Methodology,” Engineering, vol. 10, no. 11, pp. 784–804, 2018, doi: 10.4236/eng.2018.1011055.

K. N. Lapa, “Estimation of stability for a fishing vessel and some considerations,” IOP Conf. Ser. Mater. Sci. Eng., vol. 400, no. 8, 2018, doi: 10.1088/1757-899X/400/8/082014.

B. Barrass and D. R. Derret, Ship Stability for Masters and Mates 6th Edition, 6th ed. Elsevier, 2017.

D. Yang, X. Guo, L. Jiang, and T. Du, “Prediction model of buoyancy-driven flow rate in inclined tunnels with a localized buoyancy source: Emphasis on stratification effects,” Build. Environ., vol. 250, no. January, p. 111165, 2024, doi: 10.1016/j.buildenv.2024.111165.

X. Sun, Y. Ni, C. Liu, Z. Wang, and Y. Yin, “A practical method for stability assessment of a damaged ship,” Ocean Eng., vol. 222, no. September 2020, p. 108594, 2021, doi: 10.1016/j.oceaneng.2021.108594.

P. Furness, Advanced Naval Architecture & Ship Construction. Australian Maritime College, 2013.

A. Biran and R. López-Pulido, “Ship Hydrostatics and Stability: Second Edition,” Sh. Hydrostatics Stab. Second Ed., pp. 1–392, 2013, doi: 10.1016/C2011-0-07795-5.

A. Mentes and H. Akyildiz, “Criticality analysis of probabilistic damage stability of ships with aggregation operators and additive ratio assessment,” Ocean Eng., vol. 270, no. September 2022, p. 113577, 2023, doi: 10.1016/j.oceaneng.2022.113577.

F. Pérez-Arribas and J. Calderon-Sanchez, “A parametric methodology for the preliminary design of SWATH hulls,” Ocean Eng., vol. 197, no. May 2019, 2020, doi: 10.1016/j.oceaneng.2019.106823.

M. Ok and H. Lei, “Accurate and robust linear representation for containership stability conditions with ballast water,” Ocean Eng., vol. 306, no. May, p. 118141, 2024, doi: 10.1016/j.oceaneng.2024.118141.

C. G. Grlj, N. Degiuli, Ž. Tuković, A. Farkas, and I. Martić, “The effect of loading conditions and ship speed on the wind and air resistance of a containership,” Ocean Eng., vol. 273, no. February, 2023, doi: 10.1016/j.oceaneng.2023.113991.

W. hua Wang, L. lin Wang, Y. zhen Du, and Y. Huang, “Novel controller for the coupled surge-pitch problem by controlling the metacentric height of sandglass-type FDPSO,” Ocean Eng., vol. 251, no. March, p. 111095, 2022, doi: 10.1016/j.oceaneng.2022.111095.

S. Masamoto, N. Umeda, S. Subramaniam, and A. Matsuda, “Experimental study of the water on deck effects on the transverse stability of a fishing vessel running in stern quartering seas,” Ocean Eng., vol. 289, no. P2, p. 116289, 2023, doi: 10.1016/j.oceaneng.2023.116289.

S. Z. Amraini et al., “The use of fractional factorial design to analyze the effect of sulfuric acid concentration and temperature on furfural yield,” Mater. Today Proc., vol. 87, pp. 240–245, 2023, doi: 10.1016/j.matpr.2023.03.101.

E. Ostertagová, “Modelling using polynomial regression,” Procedia Eng., vol. 48, no. December 2012, pp. 500–506, 2012, doi: 10.1016/j.proeng.2012.09.545.




DOI: http://dx.doi.org/10.12962/j25481479.v9i2.20468

Refbacks

  • There are currently no refbacks.


Abstracted / Indexed by:
      
  

 

 

 

 

 

P-ISSN: 2541-5972   

E-ISSN: 2548-1479

 

Lisensi Creative Commons

IJMEIR journal published by  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/