Performance and Emission Characteristics of Diesel Engines Using Biodiesel from Waste Cooking Oil with Cetane Number Improver

Suardi Suardi, Faisal Mahmuddin, Syerly Klara, Muhdar Tasrief, Muhammad Uswah Pawara, Hijriah Hijriah, Muhammad Reza Fachrul Jaya

Abstract


The depletion of fossil fuel reserves has led to a global energy crisis, with increasing demand for alternative energy sources. Diesel fuel shortages, especially in countries like Indonesia, have driven the exploration of biodiesel as a sustainable alternative. This study aims to convert waste cooking oil (WCO) into biodiesel, with the addition of a cetane number improver (CNI) to enhance its performance in diesel engines. The biodiesel was produced through methanolysis, and 2-Ethylhexyl Nitrate (EHN) was added to improve combustion and reduce engine knocking. The results show that the produced biodiesel had a density of 856 Kg/m³ for B0, 872.7 Kg/m³ for B0 with CNI, and 872.1 Kg/m³ for B50CN. Viscosity values were 2.32 cSt for B0, 5.645 cSt for B50, and 4.722 cSt for B50CN. The cetane index was 49.2 for B50 and B50CN, while B0 had a value of 48. The emissions measured included CO levels of 194 mg/Nm³ for B0, 254 mg/Nm³ for B50, and 280 mg/Nm³ for B50CN. NOx emissions were 852 mg/Nm³ for B0, 755 mg/Nm³ for B50, and 825 mg/Nm³ for B50CN. Oxygen content was 15.9% for B0, 14.9% for B50, and 16.2% for B50CN. The findings indicate that adding EHN to WCO biodiesel improves fuel properties but increases emissions of CO and NOx. Overall, WCO-based biodiesel with EHN is a viable alternative fuel that balances performance improvements with environmental considerations.


Keywords


Biodiesel; Waste Cooking Oil; Cetane Number Improver; Diesel Engine Performance; Emission

Full Text:

PDF

References


L. Guinea, L. A. Puch, and J. Ruiz, “Energy news shocks and their propagation to renewable and fossil fuels use,” Energy Econ., vol. 130, no. January, 2024, doi: 10.1016/j.eneco.2023.107289.

J. Wang and W. Azam, “Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries,” Geosci. Front., vol. 15, no. 2, p. 101757, 2024, doi: 10.1016/j.gsf.2023.101757.

A. Gani, Erdiwansyah, E. Munawar, Mahidin, R. Mamat, and S. M. Rosdi, “Investigation of the potential biomass waste source for biocoke production in Indonesia: A review,” Energy Reports, vol. 10, pp. 2417–2438, 2023, doi: 10.1016/j.egyr.2023.09.065.

R. Suryaningsih and Irhas, “Bioenergy plants in indonesia: Sorghum for producing bioethanol as an alternative energy substitute of fossil fuels,” Energy Procedia, vol. 47, pp. 211–216, 2014, doi: 10.1016/j.egypro.2014.01.216.

R. Ramadhan, M. T. Mon, S. Tangparitkul, R. Tansuchat, and D. A. Agustin, “Carbon capture, utilization, and storage in Indonesia: An update on storage capacity, current status, economic viability, and policy,” Energy Geosci., vol. 5, no. 4, p. 100335, 2024, doi: 10.1016/j.engeos.2024.100335.

M. U. P. Suardi, Alamsyah, Andi Mursid Arifuddin, “EXPERIMENTAL ANALYSIS OF CASTOR OIL AND DIESEL OIL MIXTURES IN A 4-STROKE COMPRESSION COMBUSTION,” Int. J. Mech. Eng. Technol. Appl., vol. 4, no. 5, pp. 167–176, 2023, doi: 10.21776/MECHTA.2023.004.02.6.

S. Suardi, R. J. Ikhwani, A. Putri, and R. Aulia, “Effect of Temperature Variations of Corn ( Maize ) Oil Biodiesel on Torque Values and Thermal Efficiency of Diesel Engines,” vol. 7, no. 1, pp. 87–95, 2023, doi: 10.17977/um016v7i12023p087.

R. J. I. Suardi Suardi, Wira Setiawan, Andi Mursid Nugraha Arifuddin, Alamsyah, “Evaluation of Diesel Engine Performance Using Biodiesel from Cooking Oil Waste ( WCO ),” J. Ris. Teknol. Pencegah. Pencemaran Ind., vol. 14, no. 1, pp. 29–39, 2023, doi: https://doi.org/10.21771/jrtppi.2023.v14.no1.p29-39.

A. F. Fareed, A. S. El-Shafay, M. A. Mujtaba, F. Riaz, and M. S. Gad, “Investigation of waste cooking and castor biodiesel blends effects on diesel engine performance, emissions, and combustion characteristics,” Case Stud. Therm. Eng., vol. 60, no. June, p. 104721, 2024, doi: 10.1016/j.csite.2024.104721.

J. B. Tarigan, B. Ginting, S. Perangin-angin, R. N. Sari, P. F. Sianipar, and E. K. Sitepu, “Homogenizer-intensified amidation of free fatty acids in waste cooking oil for biodiesel production,” South African J. Chem. Eng., vol. 46, no. August, pp. 271–276, 2023, doi: 10.1016/j.sajce.2023.08.011.

M. Elkelawy et al., “Influence of lean premixed ratio of PCCI-DI engine fueled by diesel/biodiesel blends on combustion, performance, and emission attributes; a comparison study,” Energy Convers. Manag. X, vol. 10, no. December 2020, p. 100066, 2021, doi: 10.1016/j.ecmx.2020.100066.

S. Vellaiyan, S. Kuppusamy, D. Chandran, R. Raviadaran, and Y. Devarajan, “Optimisation of fuel modification parameters for efficient and greener energy from diesel engine powered by water-emulsified biodiesel with cetane improver,” Case Stud. Therm. Eng., vol. 48, no. April, p. 103129, 2023, doi: 10.1016/j.csite.2023.103129.

S. Simsek, S. Uslu, H. Simsek, and G. Uslu, “Multi-objective-optimization of process parameters of diesel engine fueled with biodiesel/2-ethylhexyl nitrate by using Taguchi method,” Energy, vol. 231, p. 120866, 2021, doi: 10.1016/j.energy.2021.120866.

G. Labeckas and S. Slavinskas, “Comparative evaluation of the combustion process and emissions of a diesel engine operating on the cetane improver 2-Ethylhexyl nitrate doped rapeseed oil and aviation JP-8 fuel,” Energy Convers. Manag. X, vol. 11, no. September, p. 100106, 2021, doi: 10.1016/j.ecmx.2021.100106.

S. Sayyed, R. Kumar Das, S. F. Ahmed, K. Kulkarni, T. Alam, and S. M. Eldin, “Modelling of multiple biodiesel-emitted nitrogen oxides using ANN approach,” Alexandria Eng. J., vol. 79, no. August, pp. 116–125, 2023, doi: 10.1016/j.aej.2023.08.005.

S. Suardi et al., “Experimental Study on The Performance Characteristics of 4 Stroke CI Engine using Biodiesel Blend from Coconut Oil,” J. Tek. Pertan. Lampung (Journal Agric. Eng., vol. 13, no. 1, p. 188, 2024, doi: 10.23960/jtep-l.v13i1.188-196.

S. Suardi, D. Suanggana, and B. Said, “Biodiesel Potentials of Waste Cooking Oil (WCO): Production, Content of Fuel Properties, and Effects on Engine Performance,” Int. J. Mar. Eng. Innov. Res., vol. 8, no. 2, pp. 213–221, 2023, doi: 10.12962/j25481479.v8i2.16679.

M. U. H. Suzihaque, N. Syazwina, H. Alwi, U. K. Ibrahim, S. Abdullah, and N. Haron, “A sustainability study of the processing of kitchen waste as a potential source of biofuel: Biodiesel production from waste cooking oil (WCO),” Mater. Today Proc., vol. 63, pp. S484–S489, 2022, doi: 10.1016/j.matpr.2022.04.526.

A. Al Zaabi et al., “Effects of the addition of a high energy density fuel, adamantane to diesel on its cetane number, sooting propensity, and soot nanostructural properties,” Clean. Chem. Eng., vol. 2, no. February, p. 100008, 2022, doi: 10.1016/j.clce.2022.100008.

S. Vellaiyan, S. Kuppusamy, D. Chandran, R. Raviadaran, and Y. Devarajan, “Optimisation of fuel modification parameters for efficient and greener energy from diesel engine powered by water-emulsified biodiesel with cetane improver,” Case Stud. Therm. Eng., vol. 48, no. May, p. 103129, 2023, doi: 10.1016/j.csite.2023.103129.

H. Kumar, A. K. Sarma, and P. Kumar, “A novel approach to study the effect of cetane improver on performance, combustion and emission characteristics of a CI engine fuelled with E20 (diesel – bioethanol) blend,” Sustain. Chem. Pharm., vol. 14, no. May, p. 100185, 2019, doi: 10.1016/j.scp.2019.100185.

“TF Seri|Mesin Diesel Horizontal Berpendingin Air|Motor Industri|YANMAR Indonesia.” https://www.yanmar.com/id/engine/products/diesel/h_watercooled/tfseries/ (accessed Sep. 30, 2022).

S. S. Suardi, “Analisa Penggunaan Biodiesel Minyak Jagung Sebagai Campuran Bahan Bakar Alternatif Mesin Diesel,” Inovtek Polbeng, vol. 9, no. 2, p. 280, 2019, doi: 10.35314/ip.v9i2.1041.

R. Akhtar et al., “Maximizing biodiesel yield of a non-edible chinaberry seed oil via microwave assisted transesterification process using response surface methodology and artificial neural network techniques,” Heliyon, vol. 9, no. 11, p. e22031, 2023, doi: 10.1016/j.heliyon.2023.e22031.

C. Pandit et al., “Recent advances and challenges in the utilization of nanomaterials in transesterification for biodiesel production,” Heliyon, vol. 9, no. 4, p. e15475, 2023, doi: 10.1016/j.heliyon.2023.e15475.

IMO, “Ships face lower sulphur fuel requirements in emission control areas from 1 January 2015.” https://www.imo.org/en/MediaCentre/PressBriefings/Pages/44-ECA-sulphur.aspx (accessed Aug. 16, 2024).

L. K. Kathumbi, P. G. Home, J. M. Raude, and B. B. Gathitu, “Performance and emission characteristics of a diesel engine fuelled by biodiesel from black soldier fly larvae: Effects of synthesizing catalysts with citric acid,” Heliyon, vol. 9, no. 11, p. e21354, 2023, doi: 10.1016/j.heliyon.2023.e21354.

Kementrian Lingkungan Hidup dan Kehutanan, BAKU MUTU EMISI MESIN DENGAN PEMBAKARAN DALA, vol. 542, no. 2. 2021, p. 17.




DOI: http://dx.doi.org/10.12962/j25481479.v9i3.21551

Refbacks

  • There are currently no refbacks.


Abstracted / Indexed by:
      
  

 

 

 

 

 

P-ISSN: 2541-5972   

E-ISSN: 2548-1479

 

Lisensi Creative Commons

IJMEIR journal published by  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/