Transforming Tofu Waste into a Growth Medium: Boosting Biomass and Proximate Content of Microalgae
Abstract
This study explores the potential of tofu waste as a cost-effective alternative growth medium for cultivating Spirulina sp. and Nannochloropsis oculata, addressing the high costs of traditional nutrient media that limit large-scale applications. Despite the nutrient richness of tofu waste, its use as a sustainable growth substrate remains underexplored. This research aims to fill this gap by evaluating the growth performance and nutritional suitability of these microalgae in tofu-based media compared to standard controls. The cultivation process was conducted in a closed photobioreactor system, with harvesting methods including flocculation, centrifugation, and filtration. Results showed that tofu waste media supported biomass production comparable to standard cultivation media, with the highest biomass concentrations recorded at the 20% tofu waste treatment, yielding 0.23 ± 0.05 g L-1 for Spirulina sp. and 0.53 ± 0.2 g L-1 for Nannochloropsis oculata. At this concentration, the final COD levels were 840.84 mg L-1and 825.90 mg L-1, respectively. The lipid and protein contents were 2.44% and 1.71% for Spirulina sp., and 1.21% and 1.50% for Nannochloropsis oculata, respectively. These findings demonstrate that tofu waste can serve as an effective and low-cost growth substrate for Spirulina sp. and Nannochloropsis oculata, promoting circular economy principles within many sectors such as energy, food, and agriculture. This study underscores the potential of waste utilization to enhance the sustainability and economic viability of microalgae cultivation.
Keywords
Full Text:
PDFReferences
L. Kurniawan, M. Maryudi, and E. Astuti, “Utilization of Tofu Liquid Waste as Liquid Organic Fertilizer Using the Fermentation Method with Activator Effective Microorganisms 4 (EM-4): A Review,” Equilib. J. Chem. Eng., vol. 8, no. 1, p. 100, 2024, doi: 10.20961/equilibrium.v8i1.84056.
N. Ana Mufarida and A. Abidin, “The Innovation of Tofu Waste Liquid Biogas Reactor Technology as an Alternative Energy Resource,” Waste Technol., vol. 9, no. 1, pp. 20–24, 2021, doi: 10.14710/wastech.9.1.20-24.
Y. S. Pradana et al., “Advancing biodiesel production from microalgae Spirulina sp. By a simultaneous extraction-transesterification process using palm oil as a co-solvent of methanol,” Open Chem., vol. 18, no. 1, pp. 833–842, 2020, doi: 10.1515/chem-2020-0133.
W. Widayat, J. Philia, and J. Wibisono, “Liquid Waste Processing of Tofu Industry for Biomass Production as Raw Material Biodiesel Production,” IOP Conf. Ser. Earth Environ. Sci., vol. 248, no. 1, 2019, doi: 10.1088/1755-1315/248/1/012064.
V. Dolganyuk et al., “Microalgae: A promising source of valuable bioproducts,” Biomolecules, vol. 10, no. 8, pp. 1–24, 2020, doi: 10.3390/biom10081153.
M. I. Khan, J. H. Shin, and J. D. Kim, “The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products,” Microb. Cell Fact., vol. 17, no. 1, pp. 1–21, 2018, doi: 10.1186/s12934-018-0879-x.
S. Abdur Razzak et al., “Microalgae cultivation in photobioreactors: sustainable solutions for a greener future,” Green Chem. Eng., vol. 5, no. 4, pp. 418–439, 2024, doi: 10.1016/j.gce.2023.10.004.
K. Gaurav, K. Neeti, and R. Singh, “Microalgae-based biodiesel production and its challenges and future opportunities: A review,” Green Technol. Sustain., vol. 2, no. 1, p. 100060, 2024, doi: 10.1016/j.grets.2023.100060.
A. L. A. Suyoso, L. A. Sari, P. D. W. Sari, D. D. Nindarwi, and D. S. Arsad, “Evaluation of the culture of Spirulina sp. with Walne nutrient plus vitamin B12, KCl, NPK, ZA CaO and urea,” IOP Conf. Ser. Earth Environ. Sci., vol. 1036, no. 1, 2022, doi: 10.1088/1755-1315/1036/1/012026.
M. L. Kagan and R. A. Matulka, “Safety assessment of the microalgae Nannochloropsis oculata,” Toxicol. Reports, vol. 2, pp. 617–623, 2015, doi: 10.1016/j.toxrep.2015.03.008.
Y. S. Pradana, F. A. Azmi, W. Masruri, and M. Hartono, “Biodiesel Production from Wet Spirulina sp . by One-Step,” MATEC Web Conf., vol. 156, pp. 1–4, 2018, doi: https://doi.org/10.1051/matecconf/201815603009.
E. Zahran, S. Elbahnaswy, F. Ahmed, I. Ibrahim, A. A. Khaled, and E. A. Eldessouki, “Nutritional and immunological evaluation of Nannochloropsis oculata as a potential Nile tilapia-aquafeed supplement,” BMC Vet. Res., vol. 19, no. 1, pp. 1–18, 2023, doi: 10.1186/s12917-023-03618-z.
B. Turkkul, O. Deliismail, and E. Seker, “Ethyl esters biodiesel production from Spirulina sp. and Nannochloropsis oculata microalgal lipids over alumina-calcium oxide catalyst,” Renew. Energy, vol. 145, pp. 1014–1019, 2020, doi: 10.1016/j.renene.2019.06.093.
M. Vigani et al., “Food and feed products from micro-algae: Market opportunities and challenges for the EU,” Trends Food Sci. Technol., vol. 42, no. 1, pp. 81–92, 2015, doi: 10.1016/j.tifs.2014.12.004.
N. Arora, E. Lo, N. Legall, and G. P. Philippidis, “A Critical Review of Growth Media Recycling to Enhance the Economics and Sustainability of Algae Cultivation,” Energies, vol. 16, no. 14, 2023, doi: 10.3390/en16145378.
N. A. Putri, R. N. Dewi, R. Lestari, R. A. Yuniar, L. M. Ma’arif, and R. Erianto, “Microalgae as A Bioremediation Agent for Palm Oil Mill Effluent: Production of Biomass and High Added Value Compounds,” J. Rekayasa Kim. Lingkung., vol. 18, no. 2, pp. 149–161, 2023, doi: 10.23955/rkl.v18i2.34018.
D. J. & Y. Ida, “Growth Curve of the Microalgae Chlorella vulgaris in Three Mercury Concentrations,” J. Popul. Ther. Clin. Pharmacol., vol. 30, no. 13, pp. 460–464, 2023, doi: 10.53555/jptcp.v30i13.5991.
I. Syaichurrozi and J. Jayanudin, “Effect of Tofu Wastewater Addition on the Growth and Carbohydrate-Protein-Lipid Content of Spirulina platensis,” Int. J. Eng. Trans. B Appl., vol. 30, no. 11, pp. 1631–1638, 2017, doi: 10.5829/ije.2017.30.11b.02.
X. Tian, X. Lin, Q. Xie, J. Liu, and L. Luo, “Effects of Temperature and Light on Microalgal Growth and Nutrient Removal in Turtle Aquaculture Wastewater,” Biology (Basel)., vol. 13, no. 901, pp. 1–13, 2024, doi: https://doi.org/10.3390/ biology13110901.
S. K. Wang, X. Wang, J. Miao, and Y. T. Tian, “Tofu whey wastewater is a promising basal medium for microalgae culture,” Bioresour. Technol., vol. 253, no. December 2017, pp. 79–84, 2018, doi: 10.1016/j.biortech.2018.01.012.
A. P. Asiandu et al., “The Effect of Tofu Wastewater and pH on the Growth Kinetics and Biomass Composition of Euglena sp.,” Curr. Appl. Sci. Technol., vol. 23, no. 2, pp. 1–16, 2023, doi: 10.55003/cast.2022.02.23.010.
I. Syaichurrozi, M. Christwardana, and J. Jayanudin, “Effect of synthetic nutrient concentrations in medium containing tofu wastewater on Spirulina platensis biomass production,” Asia-Pacific J. Sci. Technol., vol. 28, no. 5, pp. 1–12, 2023.
Dianursanti, B. T. Rizkytata, M. T. Gumelar, and T. H. Abdullah, “Industrial tofu wastewater as a cultivation medium of microalgae Chlorella vulgaris,” Energy Procedia, vol. 47, pp. 56–61, 2014, doi: 10.1016/j.egypro.2014.01.196.
S. Elystia, F. H. M. Nasution, and A. Sasmita, “Rotary Algae Biofilm Reactor (RABR) using microalgae Chlorella sp. for tofu wastewater treatment,” Mater. Today Proc., vol. 87, pp. 263–271, 2023, doi: 10.1016/j.matpr.2023.03.206.
N. Ajijah, B. C. Tjandra, U. Hamidah, Widyarani, and N. Sintawardani, “Utilization of tofu wastewater as a cultivation medium for Chlorella vulgaris and Arthrospira platensis,” IOP Conf. Ser. Earth Environ. Sci., vol. 483, no. 1, 2020, doi: 10.1088/1755-1315/483/1/012027.
N. M. Nasir et al., “Nutrient consumption of green microalgae, Chlorella sp. during the bioremediation of shrimp aquaculture wastewater,” Algal Res., vol. 72, no. August 2022, p. 103110, 2023, doi: 10.1016/j.algal.2023.103110.
R. N. Dewi, Mahreni, M. M. Azimatun Nur, A. A. Siahaan, and A. C. Ardhi, “Enhancing the biomass production of microalgae by mixotrophic cultivation using virgin coconut oil mill effluent,” Environ. Eng. Res., vol. 28, no. 2, pp. 0–2, 2023, doi: 10.4491/eer.2022.059.
W. Blanken, P. R. Postma, L. de Winter, R. H. Wijffels, and M. Janssen, “Predicting microalgae growth,” Algal Res., vol. 14, pp. 28–38, 2016, doi: 10.1016/j.algal.2015.12.020.
E. E. Ziganshina, S. S. Bulynina, K. A. Yureva, and A. M. Ziganshin, “Growth Parameters of Various Green Microalgae Species in Effluent from Biogas Reactors: The Importance of Effluent Concentration,” Plants, vol. 11, no. 24, 2022, doi: 10.3390/plants11243583.
K. H. Chowdury, N. Nahar, and U. K. Deb, “The Growth Factors Involved in Microalgae Cultivation for Biofuel Production: A Review,” Comput. Water, Energy, Environ. Eng., vol. 09, no. 04, pp. 185–215, 2020, doi: 10.4236/cweee.2020.94012.
J. Prayitno, “Growth Pattern and Biomass Harvesting in Microalgal Photobioreactor for Carbon Sequestration,” J. Teknol. Lingkung., vol. 17, no. 1, p. 45, 2016, doi: 10.29122/jtl.v17i1.1464.
R. Nurmala Dewi et al., “Potential of Spirulina sp. for Remediating Pollutants in Aquaculture Wastewater and Producing Phycocyanin,” Indones. Fish. Res. J., vol. 30, no. 1, pp. 27–35, 2024, doi: http://dx.doi.org/10.15578/ifrj.30.1.2024.27-35.
R. N. Dewi, Mahreni, M. M. A. Nur, A. A. Siahaan, and A. C. Ardhi, “Enhancing the biomass production of microalgae by mixotrophic cultivation using virgin coconut oil mill effluent,” Environ. Eng. Res., vol. 28, no. 2, pp. 220050–220059, 2022, doi: 10.4491/eer.2022.059.
M. Musa et al., “Does Tofu Wastewater Conversions Nutrient Increase the Content of the Chlorella pyrenoidosa?,” J. Ecol. Eng., vol. 22, no. 2, pp. 70–76, 2021, doi: 10.12911/22998993/130886.
A. Parsy, C. Sambusiti, P. Baldoni-Andrey, T. Elan, and F. Périé, “Cultivation of Nannochloropsis oculata in saline oil & gas wastewater supplemented with anaerobic digestion effluent as nutrient source,” Algal Res., vol. 50, no. March, p. 101966, 2020, doi: 10.1016/j.algal.2020.101966.
Q. Zhang, T. Wang, and Y. Hong, “Investigation of initial pH effects on growth of an oleaginous microalgae Chlorella sp. HQ for lipid production and nutrient uptake,” Water Sci. Technol., vol. 70, no. 4, pp. 712–719, 2014, doi: 10.2166/wst.2014.285.
Widayat, J. Philia, and J. Wibisono, “Cultivation of Microalgae Chlorella sp on Fresh Water and Waste Water of Tofu Industry,” E3S Web Conf., vol. 31, pp. 2017–2019, 2018, doi: 10.1051/e3sconf/20183104009.
A. S. Hafidzah et al., “Bioremediation of Sugar Waste Water Using Nanochloropsis oculata to Reduce Pollutant Level and Turbidity,” Indones. J. Earth Hum., vol. 1, no. 1, pp. 27–43, 2024.
S. Şirin and M. Sillanpää, “Cultivating and harvesting of marine alga Nannochloropsis oculata in local municipal wastewater for biodiesel,” Bioresour. Technol., vol. 191, pp. 79–87, 2015, doi:
1016/j.biortech.2015.04.094.
R. N. Dewi et al., “Bioremediation of seafood processing wastewater by microalgae: Nutrient removal, and biomass, lipid and protein enhancement,” Environ. Eng. Res., vol. 29, no. 6, pp. 0–2, 2024, doi: 10.4491/EER.2023.673.
E. S. Sofiyah and I. W. K. Suryawan, “Cultivation of Spirulina platensis and Nannochloropsis oculata for nutrient removal from municipal wastewater,” Rekayasa, vol. 14, no. 1, pp. 93–97, 2021, doi: 10.21107/rekayasa.v14i1.8882.
S. Safrilia, L. Kurniasari, E. N. Hidayah, and O. H. Cahyonugroho, “Comparison Between Chlorella vulgaris And Spirulina platensis in Oxidation Ditch Algae Reactor for Treating Tofu Wastewater,” in 5th International Seminar of Research Month 2020, 2021, vol. 2021, pp. 1–9, doi: 10.11594/nstp.2021.0907.
W. Widodo, Peristiwati, D. Juansah, S. Suryana, and D. Priyandoko, “Composition Analysis of Fatty Acid Metyl Ester (FAME) and Production of Sugar Hydrolysat from Some Species of Microalgae that Cultured in Tofu Waste Water,” in 4th International Symposium on Innovative Bioproduction Indonesia, 2017, no. September 2018, pp. 15–20.
S. K. Wang, X. Wang, J. Miao, and Y. T. Tian, “Tofu whey wastewater is a promising basal medium for microalgae culture,” Bioresour. Technol., vol. 253, no. December 2017, pp. 79–84, 2018, doi: 10.1016/j.biortech.2018.01.012.
M. M. A. Nur et al., “Enhancement of phycocyanin and carbohydrate production from Spirulina platensis growing on tofu wastewater by employing mixotrophic cultivation condition,” Biocatal. Agric. Biotechnol., vol. 47, no. December 2022, 2023, doi: 10.1016/j.bcab.2023.102600.
D. Lacalamita, C. Mongioví, and G. Crini, “Chemical oxygen demand and biochemical oxygen demand analysis of discharge waters from laundry industry: monitoring, temporal variability, and biodegradability,” Front. Environ. Sci., vol. 12, no. April, pp. 1–11, 2024, doi: 10.3389/fenvs.2024.1387041.
L. Wu, Q. Zhu, L. Yang, B. Li, C. Hu, and S. Lan, “Nutrient transferring from wastewater to desert through artificial cultivation of desert cyanobacteria,” Bioresour. Technol., vol. 247, no. August 2017, pp. 947–953, 2018, doi: 10.1016/j.biortech.2017.09.127.
L. G. Cardoso et al., “Spirulina sp. as a Bioremediation Agent for Aquaculture Wastewater: Production of High Added Value Compounds and Estimation of Theoretical Biodiesel,” Bioenergy Res., vol. 14, no. 1, pp. 254–264, 2021, doi: 10.1007/s12155-020-10153-4.
W. Zhou, Y. Li, Y. Gao, and H. Zhao, “Nutrients removal and recovery from saline wastewater by Spirulina platensis,” Bioresour. Technol., vol. 245, no. August, pp. 10–17, 2017, doi: 10.1016/j.biortech.2017.08.160.
B. D. Rym et al., “Modeling growth and photosynthetic response in Arthrospira platensis as function of light intensity and glucose concentration using factorial design,” J. Appl. Phycol., vol. 22, no. 6, pp. 745–752, 2010, doi: 10.1007/s10811-010-9515-9.
B. Riaño, D. Hernández, and M. C. García-González, “Microalgal-based systems for wastewater treatment: Effect of applied organic and nutrient loading rate on biomass composition,” Ecol. Eng., vol. 49, pp. 112–117, 2012, doi: 10.1016/j.ecoleng.2012.08.021.
C. Gaignard et al., “Screening of marine microalgae: Investigation of new exopolysaccharide producers,” Algal Res., vol. 44, no. March, p. 101711, 2019, doi: 10.1016/j.algal.2019.101711.
H. Al-Jabri, P. Das, S. Khan, M. Thaher, and M. Abdulquadir, “Treatment of wastewaters by microalgae and the potential applications of the produced biomass—a review,” Water (Switzerland), vol. 13, no. 1, 2021, doi: 10.3390/w13010027.
S. G. Sharma, N. Sharma, G. S. Kocher, and A. Dhir, “Improvement in biotreatment efficacy of microalgae by acclimatization method,” Desalin. Water Treat., vol. 320, no. July, 2024, doi: 10.5772/intechopen.72352.
R. Ramaraj, D. D. W. Tsai, and P. H. Chen, “Carbon dioxide fixation of freshwater microalgae growth on natural water medium,” Ecol. Eng., vol. 75, pp. 86–92, 2015, doi: 10.1016/j.ecoleng.2014.11.033.
S. A. Lee, N. Lee, H. M. Oh, and C. Y. Ahn, “Enhanced and balanced microalgal wastewater treatment (COD, N, and P) by interval inoculation of activated sludge,” J. Microbiol. Biotechnol., vol. 29, no. 9, pp. 1434–1443, 2019, doi: 10.4014/jmb.1905.05034.
J. U. Grobbelaar, “Factors governing algal growth in photobioreactors: The ‘open’ versus ‘closed’ debate,” J. Appl. Phycol., vol. 21, no. 5, pp. 489–492, 2009, doi: 10.1007/s10811-008-9365-x.
M. Stockenreiter, F. Haupt, J. Seppälä, T. Tamminen, and K. Spilling, “Nutrient uptake and lipid yield in diverse microalgal communities grown in wastewater,” Algal Res., vol. 15, pp. 77–82, 2016, doi: 10.1016/j.algal.2016.02.013.
R. A. Soni, K. Sudhakar, and R. S. Rana, “Comparative study on the growth performance of Spirulina platensis on modifying culture media,” Energy Reports, vol. 5, pp. 327–336, 2019, doi: 10.1016/j.egyr.2019.02.009.
D. Wan, Q. Wu, and K. Kuča, “Spirulina,” in Nutraceuticals: Efficacy, Safety and Toxicity, ACADEMIC PRESS, INC., 2021, pp. 959–974.
Y. Maltsev, K. Maltseva, M. Kulikovskiy, and S. Maltseva, “Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition,” Biology (Basel)., vol. 10, no. 10, pp. 1–24, 2021, doi: 10.3390/biology10101060.
E. Afrin, “Use of Wastewater for Microalgae Culture and its Effect on Growth and Proximate Composition,” Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 2020.
T. D. Panaite et al., “Microalgae (Chlorella vulgaris and Spirulina platensis) as a Protein Alternative and Their Effects on Productive Performances, Blood Parameters, Protein Digestibility, and Nutritional Value of Laying Hens’ Egg,” Appl. Sci., vol. 13, no. 18, 2023, doi: 10.3390/app131810451.
M. Muys et al., “High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies,” Bioresour. Technol., vol. 275, no. December 2018, pp. 247–257, 2019, doi: 10.1016/j.biortech.2018.12.059.
H. Hadiyanto and N. P. Adetya, “Response surface optimization of lipid and protein extractions from Spirulina platensis using ultrasound assisted osmotic shock method,” Food Sci. Biotechnol., vol. 27, no. 5, pp. 1361–1368, 2018, doi: 10.1007/s10068-018-0389-y.
A. Krishnamoorthy, C. Rodriguez, and A. Durrant, “Optimisation of ultrasonication pretreatment on microalgae Chlorella Vulgaris & Nannochloropsis Oculata for lipid extraction in biodiesel production,” Energy, vol. 278, no. February, 2023, doi: 10.1016/j.energy.2023.128026.
S. G, D. A. Kumar, T. Gopal, K. Harinath, B. S, and C. S, “Metal Nanoparticle Triggered Growth and Lipid Production in Chlorella Vulgaris,” Int. J. Sci. Res. Environ. Sci. Toxicol., vol. 2, no. 1, pp. 1–8, 2017.
R. D. Sarkar, H. B. Singh, and M. C. Kalita, “Enhanced lipid accumulation in microalgae through nanoparticle-mediated approach, for biodiesel production: A mini-review,” Heliyon, vol. 7, no. 9, p. e08057, 2021, doi: 10.1016/j.heliyon.2021.e08057.
J. Zhang, W. Y. Tsai, C. H. Hsu, and C. A. Peng, “Biodiesel production from Nannochloropsis oculata cultured at stressful carbon dioxide concentration and light illumination,” Biofuels, vol. 13, no. 4, pp. 527–535, 2022, doi: 10.1080/17597269.2020.1787699.
J. Vinoth Arul Raj, B. Bharathiraja, B. Vijayakumar, S. Arokiyaraj, J. Iyyappan, and R. Praveen Kumar, “Biodiesel production from microalgae Nannochloropsis oculata using heterogeneous Poly Ethylene Glycol (PEG) encapsulated ZnOMn2+ nanocatalyst,” Bioresour. Technol., vol. 282, no. March, pp. 348–352, 2019, doi: 10.1016/j.biortech.2019.03.030.
Dianursanti, A. G. Sistiafi, and D. N. Putri, “Biodiesel synthesis from nannochloropsis oculata and chlorella vulgaris through transesterification process using NaOH/zeolite heterogeneous catalyst,” IOP Conf. Ser. Earth Environ. Sci., vol. 105, no. 1, 2018, doi: 10.1088/1755-1315/105/1/012053.
A. Widihastuti, B. Satria, R. Yulianti, and W. Tjahjaningsih, “Growth Rate of Microalgae Nannochloropsis oculata at Different Culture Scales,” J. Aquac. Sci., vol. 7, no. October, pp. 74–82, 2022, doi: 10.31093/joas.v7i2.258.
I. N. Restiada, Muhdiat, and N. P. A. Kenak, “Nannochloropsis oculata Mass Culture Population at Different Salinity,” Bul. Tek. Litkayasa Akuakultur, vol. 8, no. 2, pp. 173–175, 2009.
S. P. Suherman, B. Bunajir, H. Hasim, and S. Arsad, “Protein content of Spirulina sp. Cultured Using a Combination of Urea and TSP Fertilizers,” J. Aquac. Fish Heal., vol. 11, no. 2, pp. 269–276, 2022, doi: 10.20473/jafh.v11i2.33307.
V. Prete, A. C. Abate, P. Di Pietro, M. De Lucia, C. Vecchione, and A. Carrizzo, “Beneficial Effects of Spirulina Supplementation in the Management of Cardiovascular Diseases,” Nutrients, vol. 16, no. 5, 2024, doi: 10.3390/nu16050642.
A. El-Sayed, E. Ebissy, and A. Ateya, “Positive impacts of
Nannochloropsis oculata supplementation on gene expression of immune and antioxidant markers and metabolic profile of Barki sheep in the transition period and lipogenic effects on progeny,” Vet. Res. Commun., vol. 48, no. 4, pp. 2207–2226, 2024, doi: 10.1007/s11259-024-10392-2.
DOI: http://dx.doi.org/10.12962/j25481479.v9i4.22009
Refbacks
- There are currently no refbacks.
| |||
|
|
|
|
P-ISSN: 2541-5972
E-ISSN: 2548-1479
IJMEIR journal published by Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/