Reduction Of Outrigger Wide To Maximize Fishing Boat Landing Area Capacity In Prigi Fishing Port

Sunardi Sunardi, Muhammad Makki Amirruddinsyah, Eko Sulkhani, Ardi Nugroho Yulianto

Abstract


Jukung fishing boats, prevalent in Prigi, face challenges due to their wide design (approximately 5 meters on both sides). This excessive width often necessitates berthing further from the coast. To address this issue, this study investigates the feasibility of reducing outrigger width to increase berthing capacity at PPN Prigi while ensuring vessel stability. Through a systematic analysis of various outrigger widths (1.5, 1.25, 1, and 0.75 meters), the study determined that a reduction to 1 meter maintains vessel stability as per HSC 2000 Annex 7 and Annex 749 (18) Ch3 design criteria. A 1-meter reduction in outrigger length can increase berthing efficiency by 66% for a standard 15-meter berth with 30-40 cm ship spacing. Consequently, the east dock of PPN Prigi can accommodate an additional 94 jukung vessels, raising the total capacity from 142 to 236. This research provides valuable insights for optimizing port infrastructure and enhancing the operational efficiency of the fishing community in Prigi.


Keywords


Jukung fishing boats, Outrigger width, Berthing capacity, Vessel stability, PPN Prigi

Full Text:

PDF

References


Ministry of Marine Affairs and Fisheries/MMAF (2021). Number of vessels by category and size. https://statistik.kkp.go.id/home.php?m=kapal&i=5#panel-footer-kpda. Accessed 2021.

Nikmatullah, M. I., Baharuddin, B., Zulkifli, Z., Alwi, M. R., & Sitepu, A. H. (2023). Modification of traditional fishing boat outriggers into a simple electric power plant. Indonesian Journal of Maritime Technology, 1(2), 65-70. https://doi.org/10.35718/ismatech.v1i2.1050

Setiono, B.A., 2010. Analisis Faktor-faktor yang mempengaruhi kinerja pelabuhan. Jurnal Aplikasi Pelayaran dan Kepelabuhanan, 1(1), pp.39-60.

Čerin, P. (2023). Enhancing sustainability through the development of port communication systems: a case study of the port of koper. Sustainability, 16(1), 348. https://doi.org/10.3390/su16010348

Gerlitz, L. and Meyer, C. (2021). Small and medium-sized ports in the ten-t network and nexus of europe’s twin transition: the way towards sustainable and digital port service ecosystems. Sustainability, 13(8), 4386. https://doi.org/10.3390/su13084386

Tijan, E., Jović, M., Panjako, A., & Žgaljić, D. (2021). The role of port authority in port governance and port community system implementation. Sustainability, 13(5), 2795. https://doi.org/10.3390/su13052795

Susilo, E. (2023). Empowering communities in sustainable fishing port management: an insight from pondok dadap sendang biru, indonesia. International Journal of Sustainable Development and Planning, 18(12), 4023-4030. https://doi.org/10.18280/ijsdp.181233

Afriantoni, A., Romadhoni, R., & Santoso, B. (2020). Study on the stability of high speed craft with step hull angle variations. Iop Conference Series Earth and Environmental Science, 430(1), 012040. https://doi.org/10.1088/1755-1315/430/1/012040

Bačkalov, I., Rudaković, S., & Cvijović, M. (2021). Intact stability of historic passenger ships in light of the second generation intact stability criteria. The International Journal of Maritime Engineering, 163(A1), 119-130. https://doi.org/10.5750/ijme.v163ia1.10

Huang, X., Yang, G., Yang, C., Sheng, Q., & Pan, C. (2022). A collaborative optimization algorithm for ship damage stability design. Journal of Physics Conference Series, 2203(1), 012071. https://doi.org/10.1088/1742-6596/2203/1/012071

Mauro, F., Braidotti, L., & Trincas, G. (2019). A model for intact and damage stability evaluation of cng ships during the concept design stage. Journal of Marine Science and Engineering, 7(12), 450. https://doi.org/10.3390/jmse7120450

Ruponen, P., Lindroth, D., Routi, A., & Aartovaara, M. (2019). Simulation-based analysis method for damage survivability of passenger ships. Ship Technology Research, 66(3), 180-192. https://doi.org/10.1080/09377255.2019.1598629

Syahril, S., Nabawi, R., & Nasty, A. (2023). Study on u hull modifications with concave design to improve the tourist ship stability. Journal of Engineering Researcher and Lecturer, 2(2), 63-69. https://doi.org/10.58712/jerel.v2i2.96

Vidhaj, M. and Lapa, K. (2022). Some considerations regarding the safety of touristic vessels operating in the albanian bays. Časopis Pomorskog Fakulteta Kotor - Journal of Maritime Sciences, 23(2), 87-96. https://doi.org/10.56080/jms221107

Sukendar, H., 1998. Perahu tradisional nusantara: tinjauan melalui bentuk dan fungsi. Proyek Pengembangan Media Kebudayaan Udayaan Departemen Pendid.

Nurdin, E., 2017. Perikanan Tuna Skala Rakyat (Small Scale) Di Prigi, Trenggalek-Jawatimur. BAWAL Widya Riset Perikanan Tangkap, 2(4), pp.177-183.

Alamsyah, A., Zulkarnaen, Z., & Suardi, S. (2021). The stability analyze of km. rejeki baru kharisma of tarakan – tanjung selor route. Teknik, 42(1), 52-62. https://doi.org/10.14710/teknik.v42i1.31283

Hasanudin, H., Zubaydi, A., & Aryawan, W. (2022). Stability assessments of ropax open car deck on longitudinal wave. Iop Conference Series Earth and Environmental Science, 1081(1), 012031. https://doi.org/10.1088/1755-1315/1081/1/012031

Petacco, N. and Gualeni, P. (2020). Imo second generation intact stability criteria: general overview and focus on operational measures. Journal of Marine Science and Engineering, 8(7), 494. https://doi.org/10.3390/jmse8070494

Pratama, A., Prabowo, A., Tuswan, T., Adiputra, R., Muhayat, N., Cao, B., … & Yaningsih, I. (2023). Fast patrol boat hull design concepts on hydrodynamic performances and survivability evaluation. Istrazivanja I Projektovanja Za Privredu, 21(2), 501-531. https://doi.org/10.5937/jaes0-40698

Raj, S., Enshaei, H., & Abdussamie, N. (2023). Standard wave scatter table limitation for evaluating sgisc based on hindcast data analysis. Applied Sciences, 13(2), 1181. https://doi.org/10.3390/app13021181

Vassalos, D. and Paterson, D. (2020). Reconfiguring passenger ship internal environment for damage stability enhancement. Journal of Marine Science and Engineering, 8(9), 693. https://doi.org/10.3390/jmse8090693

Santoso, B., Muhammad Helmi, N. Bengkalis, J.T.P.P.N., Optimasi Panjang Cadik Kapal Nelayan 3 GT.

Zain, J. and Hutauruk, R.M., 2014. Comparison of the stability of the boat with and without the use of cadik. Jurnal Online Mahasiswa (JOM) Bidang Perikanan dan Ilmu Kelautan, 1(1), pp.1-11.

Kumbara.I. A. 2012. Perancangan Awal Kapal Cumi Pelat Datar Menggunakan Moveable Cadik. Fakultas Teknik. UI Depok.

Santoso, M., 2015. Analisis Prediksi Motion Sickness Incidence (Msi) Pada Kapal Catamaran 1000 GT Dalam Tahap Desain Awal (Initial Design). Kapal, 12(1), pp.42-49.




DOI: http://dx.doi.org/10.12962/j25481479.v9i3.6058

Refbacks

  • There are currently no refbacks.


Abstracted / Indexed by:
      
  

 

 

 

 

 

P-ISSN: 2541-5972   

E-ISSN: 2548-1479

 

Lisensi Creative Commons

IJMEIR journal published by  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/