Pemodelan Risiko Penyebaran COVID-19 di Surabaya Raya Menggunakan Model Cauchy Cluster Process

Prajna Pramita Izati, Achmad Choiruddin

Abstract


COVID-19 merupakan penyakit yang menyerang alat pernapasan. Jumlah kasus COVID-19 di Jawa Timur terus mengalami peningkatan tiap harinya khususnya wilayah Surabaya Raya meliputi Kota Surabaya, Kabupaten Gresik, dan Kabupaten Sidoarjo yang memiliki jumlah pasien terkonfirmasi positif tertinggi dibandingkan kabupaten/kota lainnya di Jawa Timur. Kota Surabaya menjadi penyumbangkan terbesar kasus terkonfirmasi postif COVID-19 di Surabaya Raya yaitu sebesar 60,1 %. Penelitian ini bertujuan untuk memodelkan risiko penyebaran COVID-19 di Surabaya Raya dengan melibatkan beberapa kovariat dimana kriteria pembandingnya yaitu nilai BIC terkecil dan envelope K-function. Hasil uji homogenitas menunjukkan penyebaran data kasus terkonfirmasi positif COVID-19 di Surabaya Raya tidak homogen dan untuk korelasi spasial dengan Inhomogeneous K-function diperoleh bahwa data cenderung membentuk kelompok atau klaster. Hasil pemodelan didapatkan bahwa model Inhomogeneous Cauchy Cluster Process setelah eliminasi merupakan model terbaik, dimana kovariat kepadatan penduduk dan kepadatan lokasi kerumunan yaitu pusat perindustrian dan tempat ibadah berpengaruh secara signifikan terhadap risiko penyebaran kasus terkonfirmasi positif COVID-19 di Surabaya Raya. Sementara itu, kepadatan pusat perbelanjaan tidak berpengaruh signifikan. Hasil prediksi risiko kasus terkonfirmasi positif COVID-19 di Surabaya Raya menunjukkan risiko penyebaran kasus terkonfirmasi positif COVID-19 di wilayah Kota Surabaya lebih tinggi jika dibandingkan dengan wilayah Kabupaten Sidoarjo maupun Gresik.

Keywords


COVID-19; Inhomogeneous Cauchy Cluster Process; Pemodelan; Surabaya Raya.

Full Text:

PDF

References


WHO, "W. H. O.," 2020. [Online]. Available: https://www.who.int/health-topics/coronavirus#tab=tab_1. [Accessed 27 Agustus 2021].

S. C.-1. Jatim, "Jatim Tanggap Covid-19," 2021. [Online]. Available: https://infocovid19.jatimprov.go.id/. [Accessed 28 Agustus 2021].

BPS, "Jumlah Penduduk Provinsi Jawa Timur," 2019. [Online]. Available: https://jatim/bps/go.id. [Accessed 9 September 2021].

N. Kadi and M. Khelfaoui, "Population density, a factor in the spread of COVID-19 in Algeria: statistic study," Bulletin of the National Research Center, vol. 44, no. 1, p. 138, 20 Agustus 2020.

Y. Feng, Q. Li and X. Tong, "Spatiotemporal spread pattern of the COVID-19 cases in China," PLoS ONE, vol. 15, no. 22, pp. 1-15, 2020.

S. Dahlia, "Analisis Pola Spasial Pesebaran Kasus Covid-19 Menggunakan Sistem Informasi Geografis Di DKI Jakarta," Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, 2021.

T. A. Virania, A. Choiruddin and V. Ratnasari, "Analisis Risisko Penyebaran Covid-19 dI Surabaya Raya Menggunakan Model Inhomogeneous Thomas Cluster Process," Inferensi, vol. 4, no. 1, pp. 57-67, 2021.

P. Wahyuni, "Pemodelan Risiko Persebaran Kasus Terkonfirmasi Positif COVID-19 di Surabaya, Gresik, dan Sidoarjo Menggunakan Model Multitype Poisson Point Process," Surabaya, 2021.

M.-C. v. Lieshout, Handbook of Spatial Statistics, Boca Raton: CRC Press, 2010.

A. Baddeley, E. Rubak and R. Turner, Spatial Point Patterns Methodology and Applications with R, Boca Raton: CRC Press, 2015.

J. Møller and R. Waagepetersen, "Modern Statistics for Spatial Point Processes," Scandinavian Journal of Statistics, vol. 4, no. 34, pp. 634-684, 2007.

R. P. Waagepetersen, "An estimating function approach to inference for inhomogeneous Neyman-Scott process," Biometrics, vol. 32, no. 1, pp. 252-258, 2007.

A. C. J. &. L. F. Choiruddin, "Convex and non convex regularization methods for spatial point processes," Electronic Journal of Statistics,, vol. 12, no. 1, p. 1210–1255, 2018.

A. Jalilian, Y. Guan and R. P. Waagepetersen, "Decomposition of variance for spatial cox processes," Scandinavian Journal of Statistics, vol. 40, no. 1, pp. 119-137, 2013.

A. Choiruddin, T. Y. Susanto and R. Metrikasari, "Two-Step Estimation for Modeling the Earthquake Occurrences in Sumatra by Neyman–Scott Cox Point Processes," Soft Computing in Data Science, vol. 1489, pp. 146-159, 2021.

A. Choiruddin, . A. F. Trisnisa and N. Iriawan, "Quantifying effect of geological factor on distribution of earthquake occurrences by inhomogeneous Cox processes," Pure and Applied Geophysics, vol. 178, p. 1579–1592, 2021.

B. Ripley, "Modelling Spatial Patterns," Journal of the Royal Statistical Society: Series B (Methodological), vol. 2, no. 39, pp. 172-192, 1977.

M. Berman and T. Turner, "Approximating point process likelihood with GLIM," Journal od the Royal Statistical Society :Series C (Applied Statisiscs), vol. 1, no. 41, pp. 31-38, 1992.

A. Choiruddin, J. Coeurjolly and R. Waagepetersen, "Information criteria for inhomogeneous spatial," Australian & New Zealand Journal of Statistics, vol. 63, pp. 119-143, 2021.

BPS. 2021. [Online]. Available: https://www.bps.go.id/istilah/index.html?Istilah_page=22&Istilah_sort=deskripsi_ind. [Accessed 30 September 2021].




DOI: http://dx.doi.org/10.12962/j27213862.v5i1.12345

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats