Perbandingan Model Hybrid ARIMAX-FFNN-EGARCH dan Model Hybrid SETAR-EGARH untuk Peramalan (Studi Kasus: Data Cash Outflow dan Inflow Bank Indonesia Kota Kediri)

Agus Suharsono, Marieta Monica, Jerry Dwi Trijoyo Purnomo

Abstract


Dalam kehidupan sehari-hari, perekonomian tak lepas dari kebutuhan akan uang. Terkait hal tersebut, dibutuhkan perencanaan pencetakan uang serta komposisi uang yang akan dicetak selama satu tahun kedepan oleh Bank Indonesia. Peramalan cash outflow dan inflow dapat digunakan untuk mengestimasikan kebutuhan uang masyarakat. Pada umumnya sering dijumpai permasalahan data deret waktu yang memiliki hubungan linier. Akan tetapi, terdapat pula data deret waktu dengan pola non-linier terutama pada bidang ekonomi. Kejadian tertentu atau terjadinya shock-shock yang menyebabkan adanya pola non-linier dan volatilitas pada data tersebut. Pemodelan non-linier yang digunakan dalam penelitian ini adalah model hybrid ARIMAX-FFNN-EGARCH dan hybrid SETAR-EGARCH. Kedua model diaplikasikan dan dibandingkan pada studi kasus data cash outflow dan inflow bulanan Kantor Perwakilan Bank Indonesia Kota Kediri. Hasil yang didapatkan yaitu penduga parameter Self-Exciting Threshold Autoregressive (SETAR) dengan metode pendugaan parameter Ordinary Least Square (OLS) terbukti memiliki sifat yang tidak bias, linier, dan memiliki varians minimum atau dapat dikatakan memenuhi sifat BLUE (Best Linear Unbiased Estimator). Model untuk peramalan data outflow dan inflow dengan kedua model dapat menangkap efek variasi kalender pola non-linier serta volatilitas yang tidak konstan. Pemodelan untuk peramalan di masa yang akan datang dapat menjadi pertimbangan penting bagi instansi terkait dalam mengambil kebijakan moneter selanjutnya.

Keywords


Cash Outflow-Inflow; Deret Waktu; Hybrid ARIMAX-FFNN-EGARCH; Hybrid SETAR-EGARH

Full Text:

PDF

References


Lazzeri, F. (2020). Machine Learning for Time Series Forecasting with Python. John Wiley & Sons.

Tsay, R. S., & Chen, R. (2018). Nonlinear time series analysis (Vol. 891). John Wiley & Sons.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the econometric society, 987-1007.

Naomi, P. (2011). Risiko idiosinkratik dan imbal hasil saham pada Bursa Saham Indonesia. Jurnal Keuangan dan Perbankan, 13(2).

Riyansyah, H. N. G. P., & Saputro, D. R. (2019, January). Model 2-Regime Self-Exciting Threshold Autoregressive (SETAR). In Seminar Nasional Pendidikan Matematika Ahmad Dahlan (Vol. 6).

Fathian, F., Fard, A. F., Ouarda, T. B., Dinpashoh, Y., & Nadoushani, S. M. (2019). Modeling streamflow time series using nonlinear SETAR-GARCH models. Journal of Hydrology, 573, 82-97.

Spiegel, M. R. & Stephens, L. J. (2007). Schaum’s Outlines Teori dan Soal-Soal Statistik, Edisi Ketiga (Terjemahan). Erlangga.

Cryer, J. D. dan Chan, K.J. (2008). Time series Analysis With Application in R Second Edition. USA. Springer.

Wei, W.W.S. (2006). Time Series Analysis Univariate and Multivariate Methods Second Edition. New York. Pearson Education, Inc.

Liu, L.M. (1986). “Identification of Time Series Models in The Presence of Calendar Variation”. International Journal of Forecasting 2, (pp. 357-372). North-Holland: Elsevier Science Publishers B.V.

Lee, M. H., Suhartono dan Hamzah, N. A. (2010). “Calendar variation model based on ARIMAX for forecasting sales data with Ramadhan effect”. Proceedings of the Regional Conference on Statistical Sciences (RCSS’ 10), (pp. 349-361). Malaysia: Universiti Teknologi MARA (UiTM).

Mahdiloo, M., Toloo, M., Duong, T. T., Saen, R. F., & Tatham, P. (2018). Integrated data envelopment analysis: Linear vs. nonlinear model. European Journal of Operational Research, 268(1), 255-267.

Zhang, G. P. (Ed.). (2003). Neural networks in business forecasting. IGI global.

Fausett, L. (1994). Fundamental of Neural Network: Architectures, Algorithm, and Applications. New Jersey: Prentice Hall Inc.

Lewis, N. D. C. (2017). Neural Networks for Time Series Forecasting with R: An Intuitive Step by Step Blueprint for Beginners. AusCov.

Awchi, T. A. (2014). River discharges forecasting in northern Iraq using different ANN techniques. Water resources management, 28(3), 801-814.

Suhartono, S. (2007). Feedforward Neural Networks Untuk Pemodelan Runtun Waktu (Doctoral dissertation, Universitas Gadjah Mada).

Gouriéroux, C. (2012). ARCH models and financial applications. Springer Science & Business Media.

Zaffar, A. (2021). Modeling and Forecasting of Sunspots Cycles: An Application of ARMA (p, q)-GARCH (1, 1) Model.

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175.

Chen, Z., & Yang, Y. (2004). Assessing forecast accuracy measures. Preprint Series, 2010, 2004-10.

Suhartono, D. E. A., Prastyo, D. D., Kuswanto, H. E. R. I., & Lee, M. H. (2019). Deep neural network for forecasting inflow and outflow in Indonesia. Sains Malaysiana, 48(8), 1787-1798.

Maghfiroh, Z. F., Prabowo, H., Salehah, N. A., & Prastyo, D. D. (2021, March). Forecasting Inflow and Outflow of Currency in Central Java using ARIMAX, RBFN and Hybrid ARIMAX-RBFN. In Journal of Physics: Conference Series (Vol. 1863, No. 1, p. 012066). IOP Publishing.

Tseng, F. M., Yu, H. C., & Tzeng, G. H. (2002). Combining neural network model with seasonal time series ARIMA model. Technological forecasting and social change, 69(1), 71-87.

Bank Indonesia. (2013). Laporan Sistem Pembayaran dan Pengelolaan Uang 2012. Jakarta.

Damodar N, G. (2004). Basic econometrics.

Pemkot Kediri. (2022). Meskipun Pandemi Covid-19, Inflasi Kota Kediri Tahun 2021 Terkendali, Lebih Rendah dari Inflasi Nasional dan Jawa Timur (Online), (https://www.kedirikota.go.id/p/berita/10110467/mes kipun-pandemi-covid-19-inflasi-kota-kediri-tahun-2021-terkendali-lebih -rendah-dari-inflasi-nasional-dan-jawa-timur), diakses 10 Februari 2022.

Kusuma, A. H. (2022). Meski Pandemi, Capaian Investasi Di Kota Kediri Tahun 2021 Mengalami Kenaikan (Online), (https://rri.co.id/ surabaya/ekonomi/1343530/meski-pandemi-capaian-investasi-di-kota-ke diri-tahun-2021-mengalami-kenaikan?utm_source=news_main&utm_ medium=internal_link&utm_campaign=General%20Campaign), diakses 10 Februari 2022.




DOI: http://dx.doi.org/10.12962/j27213862.v5i1.12470

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats