Pemodelan Faktor-Faktor yang Mempengaruhi Jumlah Kasus Diabetes Melitus di Jawa Timur Menggunakan Geographically Weighted Generalized Poisson Regression dan Geographically Weighted Negative Binomial Regression

Elvira Dian Safire, Purhadi Purhadi

Abstract


Diabetes mellitus is a chronic disease of metabolic disorders characterized by blood-sugar levels exceeding normal limits. The province contributing the largest number of cases of diabetes mellitus in Indonesia in 2019 is East Java Province. To know the factors that affect the number of cases of diabetes mellitus is used approach with Geographically Weighted Generalized Poisson Regression (GWGPR) and graphically Weighted Negative Binomial Regression (GWNBR) methods. The highest number of people with diabetes mellitus in East Java is in Surabaya with 94076 cases and the lowest is in Batu City which is 3344 cases. GWGPR and GWNBR modeling both resulted in 4 groups for significants variables in each district/city. The AICc value comparison of the GWGPR and GWNBR models shows almost the same value. Sehingga menunjukkan bahwa model GWGPR dan GWNBR sudah sesuai. So, it shows that the GWGPR and GWNBR models are appropriate. The GWGPR model has a smaller AICc value than the GWNBR model, so the GWGPR method is best suited to model the number of cases of diabetes mellitus in districts/cities in East Java compared to GWNBR method.

Keywords


Diabetes Melitus, GWGPR, GWNBR

Full Text:

PDF

References


Kementrian Kesehatan RI, Infodatin Diabetes Melitus 2020, Jakarta: Kemenkes RI, 2020.

Dinas Kesehatan Provinsi Jawa Timur, Profil Kesehatan Jawa Timur 2020, Surabaya: Dinas Kesehatan Jawa Timur, 2020.

Quinones, S., Goyal. A & Ahmed, Z.U., “Geographically Weighted Machine Learning Model for Untangling Spatial Heterogenity of Type 2 Diabetes Melitus (T2D) Prevalence in the USA,” Scientific Reports, pp. 1-13, 2021.

Kauhl, B., Schweikart, J., Krafft, T., & Andrea, “Do The Risk Factors for Type 2 Diabetes Mellitus Vary by Location? A Spatial Analysis of Health Insurance Claims Northeastern Germany Using Kernel Density Estimation and Geographically Weighted Regression,” International Journal of Health Geographics, 2016.

A. Fotheringham, C. Brunsdon, &. M. C. T. Nayaka, "Geographically Weighted Poisson Regression for Disease Association Mapping," Statistics in Medicine, pp. 2695-2717, 2005.

R. Walpole, Pengantar Metode Statistika, B. Sumantri, Penyunt., Jakarta: PT Gramedia Pusaka Utama, 1995.

Fatma, Desya, “Peta Tematik : Pengertian, Ciri-ciri, Jenis dan Contohnya,” 6 Oktober 2017. [Online]. Available: https://ilmugeografi.com/kartografi/peta-tematik.

Gujarati & Porter, Dasar- Dasar Ekonometrika Edisi 5, Jakarta: Salemba Empat, 2010.

A. M. Law, &. W. D. Kelton, Simulation Modeling & Analysis, New York: McGraw Hill, Inc, 2000.

Trivedi, A., Cameron, C., & Pravin, K, “Regression-Based Test for Overdispersion in The Poisson Model,” Journal of Econometrics, vol. 46, pp. 347-364, 1990.

Fotheringham, S. A., Brunsdon, C., & Charlton, M., Geographically Weighted Regression : the analysis of spatially varying relationship, West Sussex: John Wiley & Sons Ltd, 2002.

Johnson, R. A. & Wichern, D. W., Applied Multivariate Statistical Analysis Third Edition, New Jersey, 1992.

F. Famoye, “On The Generalizes Poisson Regression Model with an Application to Accident Data,” Journal of Data Science, pp. 287-295, 2004.

Fitri, E. U. L., Pemodelan Faktor-Faktor yang Mempengaruhi Jumlah Kasus Tuberkulosis di Jawa Timur Menggunakan Metode Geographically Weighted Generalized Poisson Regression dan Geographically Weighted Negative Binomial Regression, Surabaya: Institut Teknologi Sepuluh Nopember, 2017.

F. N. Nayaka, “Geographically Weighted Poisson Regression for Disease Association Mapping,” Statistics in Medicine, pp. 2695-2717, 2005.

Yasin, R.E & Cakra, H., Geographically Weighted Regression (GWR) Sebuah Pendekatan Regresi Geografis, Yogyakarta: MOBIUS, 2017.

W. Greene, Functional Form and Heterogeneity in Models for Count Data, New York: New York University, 2007.

Hilbe, J. M., Negative Binomial Regression, New York : Cambridge University Press, 2011.

A. R. d. Silva, &. T. C. Rodrigues, “Geographically Weighted Negative Binomial Regression Incorporating Overdispersion,” Statistics and Computing, 2013.

Burnham, K. P. & Anderson, D. R., Model Selection and Multimodel Inference : A Practical Information-Theoritic Approach, Springer: Verlag New York, Inc, 2002.

PERKENI, Konsensus Pengelolaan Diabetes Melitus di Indonesia, Jakarta: PB. PERKENI, 2011.

WHO, Global Report on Diabetes, Switzerland: WHO, 2016.

Kementrian Kesehatan RI, Laporan Riskesdas Jawa Timur 2018, Jakarta: Lembaga Penerbit Badan Litbang Kesehatan, 2018.

M. Indah, Pusat Data dan Informasi Kementrian Kesehatan RI : Tuberkulosis, Jakarta: Kementrian Kesehatan RI, 2018.

Humas Dinas Kesehatan Provinsi Jawa Timur, Profil Kesehatan Provinsi Jawa Timur, Surabaya: Dinas Kesehatan Provinsi Jawa Timur, 2020.

D. Gujarati, Basic Econometrics ( Ekonometrika Dasar ). (S. Zain, Penerj.), Jakarta: Erlangga, 2013.

A. Agresti, An Introduction to Categorical Data Analysis, 2 penyunt., Hoboken: John Wiley & Sons, Inc, 2019.

Trivedi, A., Cameron, C., & Pravin, K, Regression Analysis of Count Data, USA: Cambridge University Press, 2013.

F. Famoye, “On The Generalizes Poisson Regression Model with an Application to Accident Data,” Journal of Data Science, pp. 287-295, 2004.




DOI: http://dx.doi.org/10.12962/j27213862.v6i1.12623

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats