Pemodelan Faktor-Faktor yang Mempengaruhi Jumlah Kasus Diabetes Melitus di Jawa Timur Menggunakan Geographically Weighted Generalized Poisson Regression dan Geographically Weighted Negative Binomial Regression
Abstract
Keywords
Full Text:
PDFReferences
Kementrian Kesehatan RI, Infodatin Diabetes Melitus 2020, Jakarta: Kemenkes RI, 2020.
Dinas Kesehatan Provinsi Jawa Timur, Profil Kesehatan Jawa Timur 2020, Surabaya: Dinas Kesehatan Jawa Timur, 2020.
Quinones, S., Goyal. A & Ahmed, Z.U., “Geographically Weighted Machine Learning Model for Untangling Spatial Heterogenity of Type 2 Diabetes Melitus (T2D) Prevalence in the USA,” Scientific Reports, pp. 1-13, 2021.
Kauhl, B., Schweikart, J., Krafft, T., & Andrea, “Do The Risk Factors for Type 2 Diabetes Mellitus Vary by Location? A Spatial Analysis of Health Insurance Claims Northeastern Germany Using Kernel Density Estimation and Geographically Weighted Regression,” International Journal of Health Geographics, 2016.
A. Fotheringham, C. Brunsdon, &. M. C. T. Nayaka, "Geographically Weighted Poisson Regression for Disease Association Mapping," Statistics in Medicine, pp. 2695-2717, 2005.
R. Walpole, Pengantar Metode Statistika, B. Sumantri, Penyunt., Jakarta: PT Gramedia Pusaka Utama, 1995.
Fatma, Desya, “Peta Tematik : Pengertian, Ciri-ciri, Jenis dan Contohnya,” 6 Oktober 2017. [Online]. Available: https://ilmugeografi.com/kartografi/peta-tematik.
Gujarati & Porter, Dasar- Dasar Ekonometrika Edisi 5, Jakarta: Salemba Empat, 2010.
A. M. Law, &. W. D. Kelton, Simulation Modeling & Analysis, New York: McGraw Hill, Inc, 2000.
Trivedi, A., Cameron, C., & Pravin, K, “Regression-Based Test for Overdispersion in The Poisson Model,” Journal of Econometrics, vol. 46, pp. 347-364, 1990.
Fotheringham, S. A., Brunsdon, C., & Charlton, M., Geographically Weighted Regression : the analysis of spatially varying relationship, West Sussex: John Wiley & Sons Ltd, 2002.
Johnson, R. A. & Wichern, D. W., Applied Multivariate Statistical Analysis Third Edition, New Jersey, 1992.
F. Famoye, “On The Generalizes Poisson Regression Model with an Application to Accident Data,” Journal of Data Science, pp. 287-295, 2004.
Fitri, E. U. L., Pemodelan Faktor-Faktor yang Mempengaruhi Jumlah Kasus Tuberkulosis di Jawa Timur Menggunakan Metode Geographically Weighted Generalized Poisson Regression dan Geographically Weighted Negative Binomial Regression, Surabaya: Institut Teknologi Sepuluh Nopember, 2017.
F. N. Nayaka, “Geographically Weighted Poisson Regression for Disease Association Mapping,” Statistics in Medicine, pp. 2695-2717, 2005.
Yasin, R.E & Cakra, H., Geographically Weighted Regression (GWR) Sebuah Pendekatan Regresi Geografis, Yogyakarta: MOBIUS, 2017.
W. Greene, Functional Form and Heterogeneity in Models for Count Data, New York: New York University, 2007.
Hilbe, J. M., Negative Binomial Regression, New York : Cambridge University Press, 2011.
A. R. d. Silva, &. T. C. Rodrigues, “Geographically Weighted Negative Binomial Regression Incorporating Overdispersion,” Statistics and Computing, 2013.
Burnham, K. P. & Anderson, D. R., Model Selection and Multimodel Inference : A Practical Information-Theoritic Approach, Springer: Verlag New York, Inc, 2002.
PERKENI, Konsensus Pengelolaan Diabetes Melitus di Indonesia, Jakarta: PB. PERKENI, 2011.
WHO, Global Report on Diabetes, Switzerland: WHO, 2016.
Kementrian Kesehatan RI, Laporan Riskesdas Jawa Timur 2018, Jakarta: Lembaga Penerbit Badan Litbang Kesehatan, 2018.
M. Indah, Pusat Data dan Informasi Kementrian Kesehatan RI : Tuberkulosis, Jakarta: Kementrian Kesehatan RI, 2018.
Humas Dinas Kesehatan Provinsi Jawa Timur, Profil Kesehatan Provinsi Jawa Timur, Surabaya: Dinas Kesehatan Provinsi Jawa Timur, 2020.
D. Gujarati, Basic Econometrics ( Ekonometrika Dasar ). (S. Zain, Penerj.), Jakarta: Erlangga, 2013.
A. Agresti, An Introduction to Categorical Data Analysis, 2 penyunt., Hoboken: John Wiley & Sons, Inc, 2019.
Trivedi, A., Cameron, C., & Pravin, K, Regression Analysis of Count Data, USA: Cambridge University Press, 2013.
F. Famoye, “On The Generalizes Poisson Regression Model with an Application to Accident Data,” Journal of Data Science, pp. 287-295, 2004.
DOI: http://dx.doi.org/10.12962/j27213862.v6i1.12623
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats