Generalized Space Time Autoregressive Integrated Moving Average (GSTARIMA) dalam Peramalan Data Curah Hujan di Kota Makassar

Nurul Ilmi, Aswi Aswi, Muhammad Kasim Aidid

Abstract


Modeling of rainfall data using time series data involving location elements has not been widely carried out. One model that involves elements of time and location is Space Time Autoregressive (STAR). The development of the STAR model which assumes that each location has heterogeneous characteristics is the Generalized Space Time Autoregressive Integrated Moving Average (GSTARIMA) model. The purpose of this research is to get the best GSTARIMA model and forecast rainfall data in Makassar City based on the best GSTARIMA model. This model incorporates time and geographic dependencies with different parameters for each location. The data used is Makassar city's monthly rainfall data at the Bawil IV/Panaikang, Biring Romang/Panakkukang and Stammar Paotere rain stations from January 2017 to September 2021. Autoregressive (AR) and Moving Average (MA) orders were identified using the Space Time Autocorrelation plot. Function (STACF) and Space Time Partial Autocorrelation Function (STPACF). The spatial order used in this study is spatial order 1 with an inverse distance weighting matrix and normalized cross-correlation. Parameters were estimated using the Generalized Least Squares (GLS) method. The best model for predicting rainfall in the city of Makassar is the GSTARIMA (1,0,0) (1,1,0)12  model using an inverse distance weighting matrix with the smallest average Root Mean Square Error (RMSE) of 132.9661.

Keywords


Rainfall; GSTARIMA; Distance Inverse; Cross correlation; GLS

Full Text:

PDF

References


Sumarjaya, I. W., (2016), “ Modul Analisis Deret Waktu”, Bali: Universitas Udayana.

Rani, S.A.P., Kusdarwati, H., & Sumarminingsih, E., (2013), “ Pemodelan Generalized Space Time Autoregreaaive (GSTAR(p1)): Penerapan pada Data Kesakitan Penyakit ISPA di Kota Malang”, Malang: Universitas Brawijaya.

Fauzy, M., Saleh W, K. R., & Asror, I., (2016), “Penerapan Metode Association Rule Menggunakan Algoritma Apriori pada Simulasi Prediksi Hujan Wilayah Kota Bandung”, Jurnal Ilmiah Teknologi Informasi Terapan, 2(3), 221-227.

Harun Paulus Messakh, J., (2017), “Pemodelan luas panen padi menggunakan gstarima pada enam provinsi di indonesia”, Universitas Institut Pertanian Bogor.

Novi, R., Pratiwi, E., & Wahyuningsih, S., (2019), “ Model Generalized Space Time Autoregressive Integrated Moving Average (Studi Kasus: Inflasi Kota Surabaya, Malang dan Kediri) Model of Generalized Space Time Autoregressive Integrated Moving Average (Case Study: Inflation in Surabaya, Malang and Kediri)”, Jurnal EKSPONENSIAL Volume 10, Nomor 2, Nopember 2019, 153-160.

Genshiro Kitagawa, (2010), “Introduction to Time Series Modeling”, Chapman & Hall/CRC, Boca Raton.

Aswi, & Sukarna, (2017), “Analisis Deret Waktu”, Andira Publisher.

Lameena, N.S., (2017), “Pendekatan Model Generalized Space Time Autoregressive (GSTAR) untuk Pemodelan Data Gempa”, Prosiding Seminar Nasional Inovasi Teknologi, Prosiding Seminar Nasional Inovasi Teknologi–SNITek 2017, ISSN 2580-5495, 50- 60, Jakarta.

Sahoo, P., (2013), “Probability and Mathematical Statistic”, USA: Department of Mathematics University of Louisville.

Wei, W.S.S., (2006), “Time series Analysis: Univariate and Multivariate Methods”, New York (US), Boston: Addison-Wesley Publishing Co.

Pitaloka, R. A., Sugito, S., & Rahmawati, R., (2019), “Perbandingan Metode Arima Box-Jenkins Dengan Arima Ensemble Pada Peramalan Nilai Impor Provinsi Jawa Tengah”, Jurnal Gaussian, 8(2), 194–207. https://doi.org/10.14710/j.gauss.v8i2.26648

Box, G.E.P., Jenkins G.M., (1976), “Time Series Analysis: Forecasting and Control”, San Francisco (CA): HoldenDay Inc.

Munawaroh, S., (2010), “Analisis Model ARIMA BOX-JENKINS pada Data Fluktuasi Harga Emas”, Malang: Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang.

Aswi & Sukarna, (2006), “Analisis Deret Waktu dan Aplikasi”, Makassar: Andira Publisher.

Montgomery D.C., Jennings C.L., Kulahci M., (2015), “Introduction to Time Series Analysis and Forecasting”, Canada (CA): Wiley Interscience.

Setiawan, (2015), “Kajian Model Varima dan Gstarima untuk Peramalan Inflasi Bulanan” Tesis. Bogor: Sekolah Pascasarjana Institut Pertanian Bogor.

Wutsqa, D. U., Suhartono, Sutijo, B., (2010), “Generalized Space-Time Autoregressive Modeling”, Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications (ICMSA2010), Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia, 2010, 752:761

Pfeifer P.E. & Deutsch S.J., (1980), “A Three Stage Iterative Procedure For Space-Time Modeling”, Technometrics. Vol. 22, No. 1. Siegel, S. (1994), Statistika Non Parametrik, Jakarta: PT Gramedia Pustaka.

Basuki, R. G., (2020), “Peramalan Inflow dan Outflow Uang Kartal di Jawa Barat ARIMAX, GSTARX dan hybrid GSTARXFFNN”.

Suhartono & Subanar, (2006), “The Optimal Determination of Space Weight in GSTAR Model by using Cross-Correlation Inference”, Journal Of Quantitative Methods: Journal Devoted to The Mathematical and Statistical Application in Various Fields. Vol. 2, No. 2.

Kurnia, J.D., Setiawan, &Rahayu, S.P. (2015). The Simulation Studies for Generalized Space Time Autoregressive-X (GSTARX) Model. Presented atThe International Conference on Science and Science Education, Salatiga, 1 August, 2015.

Cryer, J. D. & Chan, K. S., (2008), “Time Series Analysis With Applications in R”, New York: Spring Street.

Fitriani, (2014), “Peramalan Curah Hujan di Kota Makassar Menggunakan Model ARIMAX”, Makassar: Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Alauddin Makassar.




DOI: http://dx.doi.org/10.12962/j27213862.v6i1.14347

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats