Pengelompokan Kemiskinan di Indonesia Menggunakan Time Series Based Clustering

Dedi Setiawan, Amalia Zahra

Abstract


Indonesia has a strong commitment in achieving the 2030 SDGs, which one of the targets is reducing poverty. Poverty itself is defined as the inability of an individual or group to meet the basic needs of both food and non-food. During the pandemic, Indonesia experienced an increase in poverty percentage, which peaked in September 2020 with 10.19%. The latest data in March 2022, showed that the number has decreased by 0.75% or equivalent of 1.79 million people. However, the decrease does not encompass all provinces, there are several provinces that still suffer from increasing poverty. Therefore, it is necessary to group the provinces in Indonesia based on its percentage of poverty, in order to provide more appropriate treatment. The analysis method used in this research is the time series-based clustering with dtw distance. The clustering algorithm used is hierarchical cluster complete linkage. Based on the analysis result, the use of dtw distance can increase the silhouette coefficient value to 0.75 compared to using the Euclidean distance. The silhouette coefficient is one of the parameters used to determine the goodness of the clustering results, where the value of 0.75 can already be said to be very good clustering results. The optimum result of the clustering is a total of 3 groups with low, medium, and high poverty categories, where NTT, Papua, and West Papua provinces have the highest poverty rates but have significant progress in reducing poverty.


Keywords


cluster; DTW; hierarchy; poverty; time series

Full Text:

PDF

References


M. A. Zen, S. Wahyuningsih, A. Tri, and R. Dani, “Aplikasi Pendekatan Agglomerative Hierarchical Time Series Clustering untuk Peramalan Data Harga Minyak Goreng di Indonesia (Application of Agglomerative Hierarchical Time Series Clustering Approach for Forecasting Cooking Oil Price Data in Indonesia),” Seminar Nasional Official Statistics 2022, pp. 293–302, 2022.

N. Ulinnuh and R. Veriani, “Analisis Cluster dalam Pengelompokan Provinsi di Indonesia Berdasarkan Variabel Penyakit Menular Menggunakan Metode Complete Linkage, Average Linkage dan Ward,” InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan, vol. 5, no. 1, pp. 101–108, 2022, doi: 10.30743/infotekjar.v5i1.2464.

S. Wahyuni and Y. A. Jatmiko, “Pengelompokan Kabupaten/Kota di Pulau Jawa Berdasarkan Faktor-Faktor Kemiskinan dengan Pendekatan Average Linkage Hierarchical Clustering,” Jurnal Aplikasi Statistika & Komputasi Statistik, vol. 10, no. 1, 2018.

S. Annas, B. Poerwanto, S. Sapriani, and M. F. S, “Implementation of K-Means Clustering on Poverty Indicators in Indonesia,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 2, pp. 257–266, Mar. 2022, doi: 10.30812/matrik.v21i2.1289.

C. A. Sugianto and T. P. O. R. Bokings, “K-Means Algorithm For Clustering Poverty Data in Bangka Belitung Island Province,” Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 58–67, Feb. 2021, doi: 10.47709/cnahpc.v3i1.934.

A. Tri, R. Dani, S. Wahyuningsih, and N. A. Rizki, “Penerapan Hierarchical Clustering Metode Agglomerative pada Data Runtun Waktu,” Jambura Journal of Mathematics, vol. 1, 2019, [Online]. Available: http://ejurnal.ung.ac.id/index.php/jjom,P-

X. Wang, K. Smith, and R. Hyndman, “Characteristic-Based Clustering for Time Series Data,” Data Min Knowl Discov, vol. 13, no. 3, pp. 335–364, Sep. 2006, doi: 10.1007/s10618-005-0039-x.

M. I. Rizki, T. A. Taqqiyuddin, and J. J. Cerelia, “K-Medoids Clustering dengan Jarak Dynamic Time Warping dalam Mengelompokkan Provinsi di Indonesia Berdasarkan Kasus Aktif Covid-19,” PRISMA, Prosiding Seminar Nasional Matematika, vol. 5, pp. 685–692, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

“Introduction to Hierarchical Clustering | by John Clements | Towards Data Science.” https://towardsdatascience.com/introduction-hierarchical-clustering-d3066c6b560e (accessed Mar. 14, 2023).

A. C. Rencher, Methods of multivariate analysis, 2nd ed. Canada: Wiley Interscience, 2002.

Z. Zhang, F. Murtagh, S. Van Poucke, S. Lin, and P. Lan, “Hierarchical cluster analysis in clinical research with heterogeneous study population: highlighting its visualization with R,” Ann Transl Med, vol. 5, no. 4, pp. 75–75, Feb. 2017, doi: 10.21037/atm.2017.02.05.

D. T. Utari and D. S. Hanun, “Hierarchical Clustering Approach for Region Analysis of Contraceptive Users,” EKSAKTA: Journal of Sciences and Data Analysis, pp. 99–108, Sep. 2021, doi: 10.20885/eksakta.vol2.iss2.art3.

C. C. Astuti and R. S. Untari, “Applied Hierarchical Cluster Analysis with Average Linkage Algoritm,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 5, no. 1, pp. 1–7, Nov. 2017, doi: 10.18860/ca.v5i1.3862.

R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, 6th ed. United States of America: Pearson Education, Inc.

D. Setiawan, S. A. L. Eka, R. Mubarok, Ernawati, and B. W. Otok, “Analisis Cluster pada Kabupaten di Papua Berdasarkan Faktor-Faktor yang Mempengaruhi Indeks Pembangunan Manusia (IPM) Tahun 2013,” 2017. [Online]. Available: https://www.researchgate.net/publication/317062880

V. Niennattrakul and C. A. Ratanamahatana, “On clustering multimedia time series data using k-means and dynamic time warping,” in Proceedings - 2007 International Conference on Multimedia and Ubiquitous Engineering, MUE 2007, 2007, pp. 733–738. doi: 10.1109/MUE.2007.165.

A. Struyf, M. Hubert, and P. J. Rousseeuw, “Clustering in an Object-Oriented Environment.”

Badan Pusat Statistik, “Badan Pusat Statistik.” https://www.bps.go.id/indikator/indikator/view_data/0000/data/192/sdgs_10/1 (accessed Nov. 25, 2022).

E. Widodo, P. Ermayani, L. N. Laila, and A. T. Madani, “Pengelompokkan Provinsi di Indonesia Berdasarkan Tingkat Kemiskinan Menggunakan Analisis Hierarchical Agglomerative Clustering,” Seminar Nasional Official Statistics, vol. 2021, no. 1, pp. 557–566, Nov. 2021, doi: 10.34123/semnasoffstat.v2021i1.971.

A. Astasia, “Analisis Cluster Kemiskinan dan Indeks Pembangunan Manusia di Indonesia dengan Data Outlier Menggunakan K-Medoids dan Analisis Biplot,” 2021.




DOI: http://dx.doi.org/10.12962/j27213862.v6i1.14969

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats