Pengelompokan Daerah di Jawa Timur Berbasis Indikator Kesejahteraan Masyarakat dengan Pendekatan Analisis Cluster Hierarki dan Nonhierarki

Muhammad Fikry Al Farizi, Faradilla Harianto, Maria Setya Dewanti, Cynthia Anggelyn Siburian, M. Fariz Fadillah Mardianto, Dita Amelia, Elly Ana

Abstract


Based on Central Statistics Agency (BPS) data in September 2021, East Java is a province with the largest number of poor people in Indonesia with a total of 26,503 million people. Poverty is one of the factors that affect people's welfare in East Java. Therefore, this research was conducted to classify regencies and cities in East Java based on indicators of community welfare through a hierarchical cluster analysis approach using the single linkage, complete linkage, average linkage, and ward methods, determine the optimum cluster for each method using Pseudo – F, then compare the four methods and determine the best method using the rated value, as well as identify the characteristics of each cluster group based on the best method. There are six variables that will be used in this study. All variable data is secondary data obtained from the official website of the Central Statistics Agency (BPS) of East Java Province. This study produced four clusters using the average linkage method as the best method. This research is expected to be useful as a consideration for evaluating the government and related agencies to overcome the main problems that still occur in each regency and city. Thus, the welfare of the people of East Java can be realized and the SDGs targets in Indonesia can be achieved.

Keywords


Clustering; Kemiskinan; Jawa Timur; Pseudo – F; icdrate

Full Text:

PDF

References


F. Sellvy and W. Rolia, “Pengaruh Pendapatan Asli Daerah (PAD), Dana Bagi Hasil (DBH), Dana Alokasi Umum (DAU), dan Dana Alokasi Khusus (DAK), Terhadap Pengalokasian Belanja Modal pada Kota/ Kabupaten di Provinsi Sumatera Selatan,” Diploma, Universitas Bina Darma, 2020. Accessed: Dec. 30, 2022. [Online]. Available: http://repository.binadarma.ac.id/1201/

“Badan Pusat Statistik.” https://www.bps.go.id/publication/2022/02/25/0a2afea4fab72a5d052cb315/statistik-indonesia-2022.html (accessed Dec. 30, 2022).

“BPS Provinsi Jawa Timur.” https://jatim.bps.go.id/publication/2022/02/25/33699f6fcd84e0e2a0ad96f0/provinsi-jawa-timur-dalam-angka-2022.html. (accessed Dec. 30, 2022).

A. Afifi, S. May, R. A. Donatello, V. A. Clark, Practical Multivariate Analysis. Chapman and Hall/CRC, 2019. doi: 10.1201/9781315203737.

K. Niswatin, C. Andreas, P. F. A. O. Hans, and M. F. F. Mardianto, “Clustering of Districts and Cities in Indonesia Based on Poverty Indicators Using The K-Means Method,” Aug. 2021.

K. N. Khikmah and A. Sofro, “Clustering Regency and City in East Java Based on Population Density and Cumulative Confirmed COVID-19 Cases,” ComTech Comput. Math. Eng. Appl., vol. 12, no. 2, pp. 111–121, Nov. 2021, doi: 10.21512/comtech.v12i2.6891.

M. F. F. Mardianto et al., “Classification of food menu and grouping of food potential to support the food security and nutrition quality,” Commun Math Biol Neurosci, vol. 2022, no. 0, Art. no. 0, Mar. 2022, doi: 10.28919/cmbn/6801.

S. Wierzchoń and M. Kłopotek, Modern Algorithms of Cluster Analysis, vol. 34. in Studies in Big Data, vol. 34. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3-319-69308-8.

A. N. Fathia and R. Rahmawati, “Analisis Klaster Kecamatan di Kabupaten Semarang Berdasarkan Potensi Desa Menggunakan Metode Ward dan Single Linkage,” vol. 5, no. 4, 2016.

M. Sriningsih, D. Hatidja, and J. D. Prang, “Penanganan Multikolinearitas dengan Menggunakan Analisis Regresi Komponen Utama pada Kasus Impor Beras di Provinsi Sulut,” J. Ilm. SAINS, vol. 18, no. 1, p. 18, Jul. 2018, doi: 10.35799/jis.18.1.2018.19396.

J. F. Hair, W. C. Black, and B. J. Babin, Multivariate Data Analysis: A Global Perspective. Pearson Education, 2010.

B. Simamora, “Analisis Multivariat Pemasaran,” Universitas Indonesia Library, 2005. https://lib.ui.ac.id (accessed Dec. 30, 2022).

M. F. F. Mardianto, K. Kuzairi, T. Yulianto, R. Amalia, and F. Faisol, “Pengelompokan Optimal Kabupaten dan Kota Rawan Kriminalitas di Jawa Timur dengan Metode Analisis Kluster Terbaik,” Zeta - Math J., vol. 1, no. 1, Art. no. 1, May 2015, doi: 10.31102/zeta.2015.1.1.22-29.

R. W. Maya, A. Ramadhan, I. M. Ayuputri, and B. W. Otok, “Pengelompokan Kabupaten/Kota di Jawa Timur berdasarkan Faktor-Faktor yang Mempengaruhi AIDS,” Inferensi, vol. 2, no. 1, p. 19, Mar. 2019, doi: 10.12962/j27213862.v2i1.6807.

A. C. Rencher, Methods of Multivariate Analysis. John Wiley & Sons, 2003.

C. Oktarina, K. A. Notodiputro, and I. Indahwati, “Comparison of K-Means Clustering Method and K-Medoids on Twitter Data,” Indones. J. Stat. Its Appl., vol. 4, no. 1, Art. no. 1, Feb. 2020, doi: 10.29244/ijsa.v4i1.599.

A. Afnanda and A. Arnellis, “Analisis Cluster Covid-19 di Sumatera Barat dengan Metode Non-Hirarki (K-Means),” J. Math. UNP, vol. 6, no. 3, Art. no. 3, Dec. 2021, doi: 10.24036/unpjomath.v6i3.11818.

A. Sirojuddin, “Analisis Cluster pada Kabupaten/Kota di Provinsi Jawa Timur Berdasarkan Indikator Indeks Pembangunan Manusia,” Undergraduate, Universitas Islam Negeri Maulana Malik Ibrahim, 2016. Accessed: Dec. 30, 2022. [Online]. Available: http://etheses.uin-malang.ac.id/5762/




DOI: http://dx.doi.org/10.12962/j27213862.v6i2.15452

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats