Aplikasi Model ARIMAX dengan Efek Variasi Kalender untuk Peramalan Trend Pencarian Kata Kunci “Zalora” pada Data Google Trends
Abstract
ARIMAX is a method in time series analysis that is used to model an event by adding exogenous variables as additional information. Currently, the ARIMAX model can be applied to time series data that has calendar variation effects. In short, calendar variations occur due to changes in the composition of the calendar. The purpose of this study is to apply the ARIMAX model with the effects of calendar variations to forecast search trends for the keyword "Zalora". Data were collected starting from January 2018 to November 2022 in the form of a weekly series. Based on the results of the analysis, the ARIMAX model is obtained with calendar variation effects with ARIMA residuals (1,1,1). Forecasting accuracy using the Mean Absolute Percentage Error (MAPE) of 10.47%. Forecasting results for the next 24 periods tend to fluctuate and it is estimated that in April 2023 there will be an increase in search trends for the keyword "Zalora".
Keywords
Full Text:
PDFReferences
A. T. R. Dani, S. Wahyuningsih, and N. A. Rizki, “Penerapan Hierarchical Clustering Metode Agglomerative pada Data Runtun Waktu,” Jambura Journal of Mathematics, vol. 1, no. 2, pp. 64–78, 2019.
A. Harfianto, R. F. Mukhlas, and R. A. Wahyukomala, “Dampak Krisis Global terhadap Industri Hasil Tembakau di Indonesia: Sebuah Analisis Runtun Waktu,” Pajak dan Keuangan Negara, vol. 4, pp. 326–332, 2022.
L. A. Nurkhasanah, S. Suparti, and S. Sudarno, “Perbandingan Metode Runtun Waktu Fuzzy-Chen dan Fuzzy-Markov Chain untuk Meramalkan Data Inflasi di Indonesia,” Gaussian, vol. 4, no. 4, pp. 917–926, 2015.
M. Arumsari and A. T. R. Dani, “Peramalan Data Runtun Waktu menggunakan Model Hybrid Time Series Regression – Autoregressive Integrated Moving Average,” Jurnal Siger Matematika, vol. 2, no. 1, pp. 1–12, 2021.
R. Novidianto and A. T. R. Dani, “Analisis Klaster Kasus Aktif COVID-19 Menurut Provinsi di Indonesia Berdasarkan Data Deret Waktu,” Jurnal Aplikasi Statistika & Komputasi Statistik, vol. 5, pp. 15–24, 2020.
A. R. Saputra, S. Wahyuningsih, and M. Siringoringo, “Peramalan Jumlah Titik Panas Provinsi Kalimantan Timur Menggunakan Analisis Intervensi Fungsi Pulse Forecasting Number of Hotspots in East Borneo using Pulse Function of Intervention Analysis,” Jurnal EKSPONENSIAL, vol. 12, no. 1, 2021.
Q. S. Akmala and L. Sucipto, “Metode ARIMA , ARIMAX , dan SARIMA : Sebuah Meta- Analisis Perbedaan Tingkat Akurasi Peramalan Data Time Series,” Jurnal Informatika Kaputama (JIK), vol. 6, no. 3, 2022.
K. Ramadani, S. Wahyuningsih, and M. N. Hayati, “Forecasting Stock Price PT. Telkom Using Hybrid Time Series Regression Linear– Autoregressive Integrated Moving Average Model,” Jurnal Matematika, Statistika dan Komputasi, vol. 18, no. 2, pp. 293–307, 2022.
S. W. Rizki, S. Statistika, and Yundari, “Combined Model Time Series Regression – ARIMA on Stocks Prices,” TENSOR: Pure and Applied Mathematics Journal, vol. 3, no. 2, pp. 65–72, 2022.
G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control. California: Holden-Day, 1976.
Suhartono, Analisis Data Statistik dengan R. Surabaya: Lab Statistik Komputasi, ITS, 2008.
A. Emiro, I. K. Hasan, and N. Achmad, “Perbandingan Model ARIMA-RBF dan ARIMA-GARCH dalam Peramalan Time Series Inflasi Provinsi Gorontalo,” Research in the Mathematical and Natural Sciences, vol. 2, no. 1, pp. 9–17, 2023.
C. B. Satrio, W. Darmawan, B. U. Nadia, and N. Hanafiah, “Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET,” Procedia Comput Sci, vol. 179, no. 2020, pp. 524–532, 2021.
B. S. Wirdyacahya and M. Prastuti, “Peramalan Permintaan Semen di PT. XYZ Menggunakan Time Series Regression dan ARIMA,” Jurnal Sains dan Seni ITS, vol. 11, no. 1, 2022.
R. Yuliyanti and E. Arliani, “Peramalan Jumlah Penduduk Menggunakan Model ARIMA,” Kajian dan Terapan Matematika, vol. 8, no. 2, pp. 114–128, 2022.
G. Perone, “Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy,” European Journal of Health Economics, vol. 23, no. 6, pp. 917–940, 2022.
D. Kusnandar and N. Imro, “Peramalan Harga Saham Syariah Jakarta Islamic Index Dengan Model Arimax-Garch,” Buletin Ilmiah Math. Stat dan Terapannya (Bimaster), vol. 11, no. 2, pp. 263–272, 2022.
L. Widyarsi and H. Usman, “Penggunaan Data Google Trends untuk Peramalan Tingkat Pengangguran Terbuka di Tingkat Nasional dan Regional di Provinsi Jawa Barat,” Seminar Nasional Official Statistics, vol. 2021, no. 1, pp. 980–990, 2021.
S. Hidayat and N. Hakim, “Peramalan Ekspor Luar Negeri Banten Menggunakan Model Arimax,” Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, vol. 2, no. 2, pp. 204–213, 2021.
R. Permatasari, “Pemodelan dan Peramalan Runtun Waktu Nonlinear dengan Metode Exponential Smooth Transition Autoregressive (Estar),” Indonesian Journal of Mathematics and Natural Sciences, vol. 45, no. 1, pp. 20–29, 2022.
N. N. Lingga, I. Indwiarti, and A. A. Rohmawati, “Pemodelan dan Peramalan Kedatangan Wisatawan ke Tempat Wisata dengan Google Trends Menggunakan Metode Variasi Kalender ARIMAX,” e-Proceeding of Engineering, vol. 8, no. 2, pp. 3361–3372, 2021.
A. T. R. Dani, M. Fauziyah, H. Sandariria, and Q. Q. A’yun, “Forecasting The Search Trends of The Keyword ‘Sarung Wadimor’ In Indonesia on Google Trends Data Using Time Series Regression with Calender Variation and Arima Box-Jenkins,” Jurnal Matematika, Statistika dan Komputasi, vol. 19, no. 3, pp. 447–459, May 2023.
DOI: http://dx.doi.org/10.12962/j27213862.v6i2.15793
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats