Pemetaan Risiko Relatif Kasus Demam Berdarah Dengue di Kota Makassar Menggunakan Model Bayesian Spasial

Andi Feriansyah, Idul Fitri Abdullah, Siti Choirotun Aisyah Putri, Mardatunnisa Isnaini, Aswi Aswi

Abstract


Dengue Hemorrhagic Fever (DHF) is a disease that is still a main problem in public health in Indonesia. This study aims to map the relative risk (RR) of dengue cases in Makassar City using the Spatial Conditional Autoregressive (CAR) model with Bayesian approaches: Besag-York-Molliѐ (BYM) and Leroux models. The data used in this study is DHF case data from 2016 to 2018 for 15 sub-districts in Makassar City. The best model was based on the model fit criteria, namely Watanabe Akaike Information Criteria (WAIC) and Deviance Information Criteria (DIC). The results indicate that the best model used to map the RR for DHF cases in 2016 and 2017 is the BYM CAR model, while the best model for 2018 is the Leroux CAR model. Based on the results of the analysis, it was concluded that in 2016 the area with the highest RR was Manggala District and the lowest RR was Tamalate District. In 2017, the area with the highest RR was Ujung Pandang District and the lowest RR was Biringkanaya District. Meanwhile, in 2018, the area with the highest dan the lowest RR was Ujung Tanah and Tamalate Districts, respectively. The results of this study are expected to be able to assist the government in implementing the program to control dengue fever in Makassar City effectively and efficiently.
Keywords⎯ Dengue Hemorrhagic Fever, Relative Risk Mapping, CAR BYM, CAR Leroux.


Keywords


DBD; Pemetaan Risiko Relatif; CAR BYM; CAR Leroux

Full Text:

PDF

References


Kementerian Kesehatan RI, “Situasi Penyakit Demam Berdarah Di Indonesia 2017,” Journal of Vector Ecology, vol. 31, no. 1. pp. 71–78, 2018. [Online]. Available: https://www.kemkes.go.id/download.php?file=download/pusdatin/infodatin/InfoDatin-Situasi-Demam-Berdarah-Dengue.pdf

R. Wowor, “Pengaruh Kesehatan Lingkungan terhadap Perubahan Epidemiologi Demam Berdarah di Indonesia,” e-CliniC, vol. 5, no. 2, 2017, doi: 10.35790/ecl.5.2.2017.16879.

Y. M. Diah, Z. Zulfikar, I. Ulfa, and Z. Hadifah, “Pemetaan Kasus Demam Berdarah Dengue Dan Kepadatan Nyamuk Berdasarkan Sistem Informasi Geografis (Sig) Di Wilayah Kerja Puskesmas Lhoknga Kabupaten Aceh Besar,” vol. 8, no. 1, pp. 35–46, 2021, doi: 10.22435/sel.v8i1.4399.

T. S. Mahading, R. Resmawan, L. Yahya, and I. A. Rizkyani, “Metode Spatial Autoregressive Dalam Analisis,” JMPM J. Mat. dan Pendidik. Mat., vol. 5, no. 2, pp. 9–19, 2020.

A. Fadhilah and D. R. S. Sumunar, “Analisis Spasial Tingkat Kerawanan Demam Berdarah Dengue untuk Pemetaan Daerah Prioritas Penanganan Menggunakan Sistem Informasi Geografis di Kecamatan Prambanan Kabupaten Klaten,” Geomedia Maj. Ilm. dan Inf. Kegeografian, vol. 16, no. 1, pp. 1–9, 2018, doi: 10.21831/gm.v16i1.21051.

F. Nirmala, Kuntoro, and H. B. Notobroto, “Aplikasi General Linear Mixed Model(GLMM) pada Data Longitudinal Kadar Trombosit Demam Berdarah Dengue,” ACS Appl. Mater. Interfaces, vol. 11, no. 19, pp. 2–4, 2019, [Online]. Available: https://pubs.acs.org/doi/10.1021/acsami.9b03822

A. Aswi, S. Cramb, E. Duncan, W. Hu, G. White, and K. Mengersen, “Climate variability and dengue fever in Makassar, Indonesia: Bayesian spatio-temporal modelling,” Spat. Spatiotemporal. Epidemiol., vol. 33, 2020, doi: 10.1016/j.sste.2020.100335.

A. Aswi and S. Sukarna, “Model bayesian spasial CAR localised: studi kasus demam berdarah dengue di Kota Makassar,” Semin. Nas. VARIANSI, pp. 49–59, 2020.

A. Aswi, S. Cramb, E. Duncan, and K. Mengersen, “Evaluating the impact of a small number of areas on spatial estimation,” Int. J. Health Geogr., vol. 19, no. 1, pp. 1–14, 2020, doi: 10.1186/s12942-020-00233-1.

S. A. Thamrin, Rosdiana, A. K. Jaya, and Ansariadi, “Leroux Spatial Model for Mapping the Relative Risk of Dengue Fever in Makassar,” J. Phys. Conf. Ser., vol. 1752, no. 1, 2021, doi: 10.1088/1742-6596/1752/1/012046.

P. A. P. Moran, “Notes on Continuous Stochastic Phenomena,” Biometrika, vol. 37, no. 1–2, p. 17, 1950, doi: 10.1093/biomet/37.1-2.17.

P. C. Austin, L. J. Brunner, H. M. SM, and E. Janet, “Bayeswatch: An Overview of Bayesian Statistics,” J. Eval. Clin. Pract., vol. 8, no. 2, pp. 277–286, 2002.

A. B. Lawson, “Statistical Methods in Spatial Epidemiology John Wiley & Sons,” 2013.

S. Watanabe, “Asymtotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory,” J. Mach. Learn. Res., vol. 11, pp. 3571–3594, 2010.

A. Vehtari, A. Gelman, and J. Gabry, “Practical Bayesian Model Evalution using Leave-one-out Cross-validation and WAIC,” Stat. Comput., vol. 27, no. 5, pp. 1413–1432, 2017, doi: 10.1007/s11222-016-9696-4.

Badan Pusat Statistik, Kota Makassar dalam Angka 2017. Makassar: Badan Pusat Statistik Kota Makassar, 2017.

Badan Pusat Statistik, Kota Makassar dalam Angka 2018. Makassar: Badan Pusat Statistik Kota Makassar, 2018.

Badan Pusat Statistik, Kota Makassar dalam Angka 2019. Makassar: Badan Pusat Statistik Kota Makassar, 2019.

M. A. Tiro, A. Aswi, and Z. Rais, “Perbandingan Model Bayesian Spasial Conditional Autoregressive (CAR): Kasus Covid-19 di Kota Makassar, Indonesia,” Semin. Nas. LP2M UNM, vol. 2019, pp. 1026–1034, 2021, [Online]. Available: https://ojs.unm.ac.id/semnaslemlit/article/view/25231




DOI: http://dx.doi.org/10.12962/j27213862.v6i2.15931

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats