Peramalan Curah Hujan di Kota Bandung dengan Metode SARIMA (Seasonal Autoregressive Integrated Moving Average)

Muhammad Ilham Hakiqi, Arif Firmansyah, Restu Arisanti

Abstract


The need for future rainfall information, modeling and forecasting is important. The forecasting method is a method used to predict future conditions based on past data. Rainfall data is time-series data in the form of seasonality, a pattern that repeats at fixed time intervals, so the authors use the Seasonal Autoregressive Integrated Moving Average (SARIMA) method, which is appropriate for data with seasonal characteristics. The author takes monthly rainfall data in Bandung city for the period January 2016 to December 2021 to forecast rainfall in Bandung city for next year. After calculations using the SARIMA method, the best model for forecasting rainfall in the city of Bandung is then obtained, namely the SARIMA model (0,0,0)(0,1,1)12.

Keywords


SARIMA; Forecasting; Rainfall; Bandung City

Full Text:

PDF

References


D. Ruswanti, “PENGUKURAN PERFORMA SUPPORT VECTOR MACHINE DAN NEURAL NETWORK DALAM MERAMALKAN TINGKAT CURAH HUJAN,” J. Gaung Inform., vol. 13, no. 1, 2020.

Gusti, “IABI: Banjir Bandung Akibat Konversi Lahan DAS Citarum | Universitas Gadjah Mada,” UGM, 2016. https://www.ugm.ac.id/id/berita/12719-iabi-banjir-bandung-akibat-konversi-lahan-das-citarum (accessed Dec. 20, 2022).

Badan Pusat Statistik, “Statistik Indonesia 2021,” Kota Bandung, 2021.

A. Lusiani and E. Habinuddin, “Pemodelan Autoregressive Integrated Moving Average (ARIMA) Curah Hujan di Kota Bandung,” Sigma-Mu, vol. 3, pp. 9–25, 2011.

J. D. Cryer and K.-S. Chan, Time Series Analysis. New York, NY: Springer New York, 2008. doi: 10.1007/978-0-387-75959-3.

S. Santoso, “Business forecasting: metode peramalan bisnis masa kini dengan minitab dan SPSS,” Elek Media Komputindo, Jakarta, 2009.

H. H. M. Hatta, F. M. Daud, and N. Mohamad, “An application of time series ARIMA forecasting model for predicting the ringgit Malaysia-dollar exchange rate,” J. Data Anal., vol. 1, no. 1, pp. 42–48, 2018.

A. Widarjono, “Aplikasi model ARCH kasus tingkat inflasi di Indonesia,” Econ. J. Emerg. Mark., vol. 7, no. 1, 2002.

S. Makridakis, S. Wheelwright, and R. J. Hyndman, Forecasting: methods and applications. John Wiley & Sons, 1998.

N. Salwa, N. Tatsara, R. Amalia, and A. F. Zohra, “Peramalan Harga Bitcoin Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average),” J. Data Anal., vol. 1, no. 1, pp. 21–31, 2018.

S. I. Vagropoulos, G. I. Chouliaras, E. G. Kardakos, C. K. Simoglou, and A. G. Bakirtzis, “Comparison of SARIMAX, SARIMA, modified SARIMA and ANN-based models for short-term PV generation forecasting,” in 2016 IEEE International Energy Conference (ENERGYCON), Apr. 2016, pp. 1–6. doi: 10.1109/ENERGYCON.2016.7514029.

Tasna Yunita, “Peramalan Jumlah Penggunaan Kuota Internet Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA),” J. Math. Theory Appl., pp. 16–22, Aug. 2020, doi: 10.31605/jomta.v2i1.777.

G. E. P. Box and D. A. Pierce, “Distribution of residual autocorrelations in autoregressive-integrated moving average time series models,” J. Am. Stat. Assoc., vol. 65, no. 332, pp. 1509–1526, 1970.

A. M. Al’afi, W. Widiarti, D. Kurniasari, and M. Usman, “Peramalan Data Time Series Seasonal Menggunakan Metode Analisis Spektral,” J. Siger Mat., vol. 1, no. 1, pp. 10–15, 2020.

R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice. OTexts, 2018.

M. I. Rizki and T. A. Taqiyyuddin, “Penerapan Model SARIMA untuk Memprediksi Tingkat Inflasi di Indonesia,” J. Sains Mat. dan Stat., vol. 7, no. 2, Aug. 2021, doi: 10.24014/jsms.v7i2.13168.




DOI: http://dx.doi.org/10.12962/j27213862.v1i1.19119

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats