Perbandingan Performa Bandwidth CV, AICc, dan BIC pada Model Geographically Weighted Regression (Aplikasi pada Data Pengangguran di Pulau Jawa)

Carisa Putri Salsabila Purnamasari, Yekti Widyaningsih

Abstract


Unemployment is a social phenomenon, a problem faced by every region in Indonesia. One way that can be carried out to reduce the unemployment rate is analyzing the factors that affect the open unemployment rate. Rather than using linear regression analysis, Geographically Weighted Regression (GWR) was preferable since it gave a better representative model by effectively resolve spatial heterogeneity problem which is generally exist in spatial data of social phenomenon. Spatial heterogeneity show that linear regression analysis will give a misleading interpretation results in some locations. GWR solve this problem by generating a single model in each observation location so the regression parameters can be different at each observation location. Parameter estimation in the GWR model uses weights based on the location of each observation so that the estimate model applies only to this location. The weighting determination depends on the bandwidth value. Bandwidth is a circle with radius ℎ from the center point of the observation location which is used as the basis for determining the weight of each observation location. Smaller bandwidth value will result a large variance. It can happen because when the bandwidth is very small, there will be a small number observations in the radius h, which can makes the estimate model is very rough (undersmoothing) because it uses few observations, and vice versa. Therefore, choosing the optimum bandwidth is very important in determining the weights where it can affect the accuracy of the model formed. This study aims to compare the performance of the GWR model using the Cross Validation (CV), Akaike Information Criterion Corrected (AICc), and Bayesian Information Criterion (BIC) bandwidth methods in the formation of Fixed Gaussian Kernel weighted function which is applied to unemployment data in districts/cities in Java. The results show that the GWR model with CV bandwidth is better at explaining district/city unemployment data on Java Island in 2020 which it has the smallest RMSE value, 1.0904, and the largest R2 and Adjusted-R2 values, namely 0.8539011 and 0.7937159, respectively.

Keywords


Bandwidth, CV, AICc, BIC, GWR

Full Text:

PDF

References


BPS. (2021). Tingkat Pengangguran Terbuka Menurut Provinsi (Persen), 2020-2021. Available at: https://www.bps.go.id/indicator/6/543/1/tingkat-pengangguran-terbuka-menurut-provinsi.html [Accessed 16 Maret 2022].

Jumita, V.F., “Tingkat Pengangguran, Pengeluaran Pemerintah pada Sektor Infrastruktur, dan Investasi Terhadap Kesejahteraan Masyarakat di 13 Kabupaten/Kota Provinsi Jawa Tengah Tahun 2015-2019”, Bachelor's thesis, Fakultas Ekonomi dan Bisnis, UIN Jakarta, Jakarta, 2021.

Ishak, K., “Faktor-Faktor Yang Mempengaruhi Pengangguran Dan Inflikasi Terhadap Indeks Pembangunan Di Indonesia”, Iqtishaduna: Jurnal Ilmiah Ekonomi Kita, 7(1), pp.22-38. 2018.

Fotheringham, A.S., Brunsdon, C., & Charlton, M., Geographically Weighted regression: The Ananlysis of Spatially Varying Relationships. England: John Wiley and Sons, Ltd. 2002

Fotheringham, A.S., & Charlton, M., Geographically Weighted Regression: White Paper. Kildare: National University of Ireland Maynooth, 1-14. 2009.

Guo, L. M., “Comparison of Bandwidth Selection in Application of Geographically Weighted Regression: A Case Study”, Canadian Journal of Forest Research, 38(9): 2526-2534. 2008.

Rosa, A. A., “Penggunaan Pembobot Fixed Gaussian Kernel dan Fixed Bisquare Kernel pada Model Geographically Weighted Regression”, Skripsi, Fakultas MIPA, Universitas Hasanuddin, Makassar, 2015.

Mertha, W. P., “Analisis Hubungan Kondisional Sektor Ekonomi dan Penelitian terhadap Angka Kemiskinan di Jawa Timur menggunakan Metode GWR”, Skripsi, Institut Teknologi Sepuluh November, Surabaya, 2008.

Ariyanto, D., “Perbandingan Bandwidth Cross Validation dan Bandwidth Akaike Information Criterion dalam Pembentukan Fungsi Pembobot Adaptive Gaussian Kernel pada Geographically Weighted Regression (Studi Kasus Produktivitas Padi Sawah di Kabupaten Tulungagung)”, Tesis, Fakultas MIPA, Universitas Brawijaya Malang, Malang, 2017. http://repository.ub.ac.id/id/eprint/2510.

Amin, R.A., “PERFORMA BANDWIDTH CROSS VALIDATION DAN AKAIKE INFORMATION CRITERION CORRECTED PADA MODEL GEOGRAPHICALLY WEIGHTED REGRESSION (Studi Kasus: Jumlah Penduduk Kabupaten/Kota di Provinsi Sulawesi Selatan Tahun 2018)”, Skripsi, Fakultas MIPA, Universitas Hasanuddin, Makassar, 2021. http://repository.unhas.ac.id/id/eprint/3800.

Anselin, L., Spatial Econometrics: Methods and Models. Dordrect: Kluwer Academic Publishers. 1988.

Brunsdon, C., Fotheringham, S., & Charlton, M., Geographically weighted regression-modelling spatial non-stationarity. 47(3), 431–443. 2012.

Purhadi, & Yasin, H., “Mixed Geographically Weighted Regression Model (Case Study: the Percentage of Poor Households in Mojokerto 2008)”, European Journal of Scientific Research, 69(2): 188-196. 2012.

Gujarati, D., Ekonometrika Dasar, Cetakan ketiga. Jakarta: Erlangga. 1993.

Harel, O., “The Estimation of R2 and Adjusted R2 in Incomplete Data Sets Using Multiple Imputation”, Journal of Applied Statistics, 36(10): 1109- 1118. 2009.




DOI: http://dx.doi.org/10.12962/j27213862.v1i1.19130

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats