Perbandingan Performa Bandwidth CV, AICc, dan BIC pada Model Geographically Weighted Regression (Aplikasi pada Data Pengangguran di Pulau Jawa)
Abstract
Keywords
Full Text:
PDFReferences
BPS. (2021). Tingkat Pengangguran Terbuka Menurut Provinsi (Persen), 2020-2021. Available at: https://www.bps.go.id/indicator/6/543/1/tingkat-pengangguran-terbuka-menurut-provinsi.html [Accessed 16 Maret 2022].
Jumita, V.F., “Tingkat Pengangguran, Pengeluaran Pemerintah pada Sektor Infrastruktur, dan Investasi Terhadap Kesejahteraan Masyarakat di 13 Kabupaten/Kota Provinsi Jawa Tengah Tahun 2015-2019”, Bachelor's thesis, Fakultas Ekonomi dan Bisnis, UIN Jakarta, Jakarta, 2021.
Ishak, K., “Faktor-Faktor Yang Mempengaruhi Pengangguran Dan Inflikasi Terhadap Indeks Pembangunan Di Indonesia”, Iqtishaduna: Jurnal Ilmiah Ekonomi Kita, 7(1), pp.22-38. 2018.
Fotheringham, A.S., Brunsdon, C., & Charlton, M., Geographically Weighted regression: The Ananlysis of Spatially Varying Relationships. England: John Wiley and Sons, Ltd. 2002
Fotheringham, A.S., & Charlton, M., Geographically Weighted Regression: White Paper. Kildare: National University of Ireland Maynooth, 1-14. 2009.
Guo, L. M., “Comparison of Bandwidth Selection in Application of Geographically Weighted Regression: A Case Study”, Canadian Journal of Forest Research, 38(9): 2526-2534. 2008.
Rosa, A. A., “Penggunaan Pembobot Fixed Gaussian Kernel dan Fixed Bisquare Kernel pada Model Geographically Weighted Regression”, Skripsi, Fakultas MIPA, Universitas Hasanuddin, Makassar, 2015.
Mertha, W. P., “Analisis Hubungan Kondisional Sektor Ekonomi dan Penelitian terhadap Angka Kemiskinan di Jawa Timur menggunakan Metode GWR”, Skripsi, Institut Teknologi Sepuluh November, Surabaya, 2008.
Ariyanto, D., “Perbandingan Bandwidth Cross Validation dan Bandwidth Akaike Information Criterion dalam Pembentukan Fungsi Pembobot Adaptive Gaussian Kernel pada Geographically Weighted Regression (Studi Kasus Produktivitas Padi Sawah di Kabupaten Tulungagung)”, Tesis, Fakultas MIPA, Universitas Brawijaya Malang, Malang, 2017. http://repository.ub.ac.id/id/eprint/2510.
Amin, R.A., “PERFORMA BANDWIDTH CROSS VALIDATION DAN AKAIKE INFORMATION CRITERION CORRECTED PADA MODEL GEOGRAPHICALLY WEIGHTED REGRESSION (Studi Kasus: Jumlah Penduduk Kabupaten/Kota di Provinsi Sulawesi Selatan Tahun 2018)”, Skripsi, Fakultas MIPA, Universitas Hasanuddin, Makassar, 2021. http://repository.unhas.ac.id/id/eprint/3800.
Anselin, L., Spatial Econometrics: Methods and Models. Dordrect: Kluwer Academic Publishers. 1988.
Brunsdon, C., Fotheringham, S., & Charlton, M., Geographically weighted regression-modelling spatial non-stationarity. 47(3), 431–443. 2012.
Purhadi, & Yasin, H., “Mixed Geographically Weighted Regression Model (Case Study: the Percentage of Poor Households in Mojokerto 2008)”, European Journal of Scientific Research, 69(2): 188-196. 2012.
Gujarati, D., Ekonometrika Dasar, Cetakan ketiga. Jakarta: Erlangga. 1993.
Harel, O., “The Estimation of R2 and Adjusted R2 in Incomplete Data Sets Using Multiple Imputation”, Journal of Applied Statistics, 36(10): 1109- 1118. 2009.
DOI: http://dx.doi.org/10.12962/j27213862.v1i1.19130
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats