Nonparametric Regression Modeling with Multivariable Fourier Series Estimator on Average Length of Schooling in Central Java in 2023

Ludia Ni'matuzzahroh, Andrea Tri Rian Dani

Abstract


One of the benchmarks to see the quality of education and human resources in Indonesia is the average length of schooling. If the school average is higher, it can positively impact Indonesian society, enabling it to compete globally. There are several factors, both economic and educational factors, that influence the low average length of schooling in Central Java Province. Therefore, this research aims to model and determine what variables can influence the average length of schooling in Central Java in 2023 using a nonparametric regression approach with a multivariable Fourier series estimator. This approach is used when the form of the relationship pattern is unknown and tends to have recurring patterns. The Fourier series estimator depends on the number of oscillations, so in this study, 1 to 4 oscillations were tried, where the minimum GCV value determined the optimal oscillation. The best model was obtained on the analysis results, producing the smallest GCV value, namely the model with 3 oscillations with a GCV value of 1.027. The results of simultaneous and partial hypothesis testing showed that all predictor variables used in this research were proven to influence the Average Length of Schooling. This is also supported by the coefficient of determination value of 85.464%.

Keywords


Fourier series, nonparametric regression, GCV, average length of schooling

Full Text:

PDF

References


Badan Pusat Statistik Indonesia, “[Metode Baru] Rata-Rata Lama Sekolah,” 2023, accessed on March 4th 2024, from https://www.bps.go.id/id/statistics-table/2/NDE1IzI%253D/-metode-baru--rata-rata-lama-sekolah.html

BPS Provinsi Jawa Tengah, “Provinsi Jawa Tengah dalam Angka 2024,” vol. 49, BPS Provinsi Jawa Tengah: Jawa Tengah, 2024, pp. 467.

BPS Provinsi Jawa Tengah, Statistik Daerah Provinsi Jawa Tengah 2023. Jawa Tengah: Badan Pusat Statistik Provinsi Jawa Tengah, 2023.

H. Nurcahyani, I. N. Budiantara, and I. Zain, “The Curve Estimation of Combined Truncated Spline and Fourier Series Estimators for Multiresponse Nonparametric Regression,” Mathematics, vol. 9, no. 1141, pp. 1–22, 2021.

B. W. Silverman, “Some Aspects of The Spline Smoothing Approach to Non-parametric Regression Curve Fitting,” Journal of the Royal Statistical Society, Series B (Methodological), vol. 47, no. 1, pp. 01–52, 1985.

R. L. Eubank, Nonparametric Regression and Spline Smoothing. New York: Marcel Dekker, 1999.

M. Bilodeau, “Fourier Smoother and Additive Models,” The Canadian Journal of Statistics, vol. 20, no. 3, pp. 257–259, 1992.

Y. Wang, “Smoothing Spline Models with Correlated Random Errors,” Journal of the American Sttaistical Association, vol. 93, pp. 341–348, 1998.

A. Prahutama, “Model Regresi Nonparametrik dengan Pendekatan Deret Fourier pada Kasus Tingkat Pengangguran Terbuka di Jawa Timur,” Prosiding Seminar Nasional Statistika Undip, vol. 10, pp. 69–76, 2013.

N. P. A. M. Mariati, I. N. Budiantara, and V. Ratnasari, “Modeling Poverty Percentages in the Papua Islands using Fourier Series in Nonparametric Regression Multivariable,” Journal of Physics: Conference Series, vol. 1397, no. 1, pp. 1–7, 2019.

N. Y. Adrianingsih, A. T. R. Dani, and A. Ainurrochmah, “Pemodelan dengan Pendekatan Deret Fourier pada Kasus Tingkat Pengangguran Terbuka di Nusa Tenggara Timur,” Prosiding Seminar Edusaintech, vol. 4, pp. 400–407, 2020.

M. A. D. Octavanny, I. N. Budiantara, H. Kuswanto, and D. P. Rahmawati, “Modeling of Children Ever Born in Indonesia Using Fourier Series Nonparametric Regression, “ Journal of Physics: Conference Series, vol. 1752, no. 1, pp. 1–7, 2021.

A. T. R. Dani, A. F. Dewi, and L. Ni’matuzzahroh, “Studi Simulasi dan Aplikasi: Estimator Deret Fourier pada Pemodelan Regresi Nonparametrik,” Prosiding Seminar Nasional Matematika, Statistika, dan Aplikasinya, vol. 2, pp. 279–288, 2022.

Rahmania, Sifriyani, and A. T. R. Dani, “Modeling Open Unemployment Rate in Kalimantan Island using Nonparametric Regression with Fourier Series Estimator,” Barekeng: jurnal ilmu matematika dan terapan, vol. 18(1), pp. 0245–0254, 2024.

L. J. Asrini and I. N. Budiantara, “Fourier Series Semiparametric Regression Models (Case Study: The Production of Lowland Rice Irrigation in Central Java,” ARPN Journal of Engineering and Applied Sciences, vol. 9, no. 9, pp. 1501–1506, 2014.

G. Wahba and Y. Wang, “Spline Function,” Encyclopedia of Statistical Sciences, pp. 1–27, 2014.

A. T. Damaliana, I. N. Budiantara, and V. Ratnasari, “Comparing Between mGCV and aGCV Methods to Choose the Optimal Knot Points in Semiparametric Regression with Spline Truncated Using Longitudinal Data,” IOP Conference Series: Materials Science and Engineering, vol. 546(3), pp. 1–10, 2019.

J. Racine, “Consistent Significance Testing for Nonparametric Regression,” Journal of Business & Economic Statistics, vol. 15, no. 3, pp. 369–378, 1997.

Badan Pusat Statistik Provinsi Jawa Tengah, Statistik Pendidikan Provinsi Jawa Tengah. Jawa Tengah: Badan Pusat Statistik Provinsi Jawa Tengah, 2022.

L. Ni’matuzzahroh and A. T. R. Dani, “Pemodelan Rata-Rata Lama Sekolah di Provinsi Nusa Tenggara Timur (NTT) Menggunakan Pendekatan Regresi Nonparametrik Spline Truncated,” Prosiding Seminar Nasional Matematika, Statistika, dan Aplikasinya, vol. 2, pp. 289–301, 2022.

F. A. Suhendar, R. V. Sari, T. Pangesti, Z. M. G. Putra, and A. P. A. Santoso, “The Impact of Poverty in Indonesia on Education,” Jurnal Ilmu Sosial dan Pendidikan (JISIP), vol 8, no. 2, pp. 1119–1125, 2024.

D. Suryadarma and A. Suryahadi, The Contrasting Role of Ability and Poverty on Education Attainment: Evidence from Indonesia. Jakarta: SMERU Research Institute, 2009.




DOI: http://dx.doi.org/10.12962/j27213862.v7i2.20219

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats