Risk Analysis Forecasting Models of Poisson Regression, Negative Binomial Regression, Poisson GSARIMA, and Negative Binomial GSARIMA (Case Study: Number of Bicycle Sales)

Windya Harieska Pramujati

Abstract


The Poisson model is a model that can be applied to count data, where in this research the case study used is the number of bicycle sales. However, there is an equidispersion assumption in the Poisson model, that the response variable has the same mean and variance. A more flexible model is needed if the equidispersion assumption is not met, namely the Negative Binomial model. In this research, two models were applied, namely the regression model and the GSARIMA model, with two different distributions, namely the Poisson distribution and the Negative Binomial distribution. Therefore the models that will be compared are the Poisson Regression, Negative Binomial Regression, Poisson GSARIMA, and Negative Binomial GSARIMA models. The differences in results for each model are due to errors that occur in each model used. Hence, a model with a smaller error can be said to be a model that has a smaller risk than other models. The results of this study show that the error rate in the Negative Binomial GSARIMA ZQ1 model is relatively smaller than other models with a value of AIC = 1058.7. This model is the best model that can be used as a forecasting model in the case of bicycle sales and can minimize the risk of error in a forecasting result.

Keywords


Poisson Regression, Negative Binomial Regression, GSARIMA

Full Text:

PDF

References


Badan Pusat Statistika. Analisis Big Data di Tengah Masa Adaptasi Kebiasaan Baru. Jakarta: Badan Pusat Statistika. 2020

Briet, J. T. O., Amerasinghe, H. P., dan Vounatsou, P. Generalized Seasonal Autoregressive Integrated Moving Average Models for Count Data with Application to Malaria Time Series with Low Case Numbers. Malaria Journal, PLoS ONE, 8(6): e65761. 2013

McCullagh, P. & Nelder, J. A. Generalized Linear Models. London: Chapman and Hall. 1989.

Cameron, A.C dan Trivedi,P.K. Regression Analysis of Count Data. Cambridge University Press. USA. 1998.

Benjamin, M. A., Rigby, R. A. & Stasinopoulos, D. M. Generalized Autoregressive Moving Average Models. Journal of the American Statistical Association, Vol 98, No 461, pp. 214-216. 2003.

June MA & Konstadinos G. Applications of Poisson Regression Models to Actvity Frequency Analysis and Prediction. Transportation Research Record 1676. Paper No. 99-0813. 1999

Funda h. et al. Poisson Regresyon Modelinde asiri Yayilim Durumu Ve Negatif Binomial Regresyon Analizinin Turkiye Grev Sayilari Uzerine Bir Uygulamasi. Yonetim, Yil15, Sayi 48, Haziran. 17-25. 2004

Haibin Liu, et al. Negative Binomial Regression of Electric Power Outages in Hurricanes. Journal Infrastructur System. 11(4): 258-267. 2005.

Asrirawan. Simulasi Perbandingan Metode Peramalan Model Generalized Seasonal Autoregressive Integrated Moving Average (GSARIMA) dengan Seasonal Autregressive Integrated Moving Average (SARIMA). Jurnal Dinamika, 06(1), pp. 61-66. 2015

M. Aqil. Etimasi Parameter pada Model Poisson Generalized Autoregressive Moving Average (GARMA) dengan Algoritma IRLS Studi Kasus: Peramalan Jumlah Kecelakaan di Jalan Tol Surabaya-Gempol. Jurnal Sains dan Seni ITS, Vol. 7, No. 2. 2019

Agil Desti. Etimasi Parameter pada Model Poisson Generalized Autoregressive Moving Average (GARMA) dengan Algoritma IRLS Studi Kasus: Peramalan Jumlah Kecelakaan di Jalan Tol Surabaya-Gempol. Jurnal Sains dan Seni ITS, Vol. 8, No. 1. 2019

L P Wardhani et al. The Theft Criminality Forecasting In The Surabaya District Police Region Using Poisson GARMA Model and Negative Binomial GARMA Model. Journal of Physics, Conf. Ser. 1490 012015. 2020.

T. Kim et al. Prediction Regions for Poisson and Over-Dispersed Poisson Regression Models with Applications to Forecasting Number of Deaths during the COVID-19 Pandemic. 2020

Famoye, F., Wulu, J. T., dan Singh, K. P. “On The Generalized Poisson Regression Model with an Application to Accident Data”, Journal of Data Science, No. 2, pp. 287-295. 2004.

Hilbe, J. Negative Binomial Regression, Second Edition. New York: Cambridge University Press. 2011.




DOI: http://dx.doi.org/10.12962/j27213862.v7i2.20255

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats