Ensemble Cluster Method For Clustering Cabbage Production In East Java

Maulidya Maghfiro, Ni Wayan Surya Wardhani, Atiek Iriany

Abstract


Cluster analysis is a multivariate analysis method classified under interdependence methods, where explanatory variables are not differentiated from response variables. The methods used include hierarchical cluster analysis, such as agglomerative and divisive, and non-hierarchical methods such as Self Organizing Maps (SOM) based on Artificial Neural Networks (ANN). Various cluster analysis methods often yield diverse solutions, making it challenging to determine the optimal solution. Therefore, the ensemble cluster method is employed to combine various clustering solutions without considering the initial data characteristics with providing better results. One case study of clustering is the grouping of cabbage production. East Java Province has become the third-highest cabbage-producing province in Indonesia with a production of 210,454 tons. Clustering of cabbage-producing regencies/cities was conducted to optimize production and identify areas that have not yet reached their maximum potential. This study compares five clustering methods which are hierarchical analysis (complete linkage, single linkage, average linkage), Self-Organizing Map (SOM), and Ensemble Cluster. The quality of clustering was evaluated using the Silhouette Coefficient (SC), Dunn Index (DI), and Connectivity Index (CI). The results indicate that the Ensemble Cluster method showed the best performance, with an SC value of 0.9124, a DI value of 1.3734, and a CI value of 2.9290, indicating excellent cluster separation. Therefore, the ensemble cluster method is recommended as the best clustering method in this study.

Keywords


Cluster, hierarchical analysis, SOM, Ensemble Cluster, Cabbage

Full Text:

PDF

References


S. Nugroho, Statistika Mutivariat Terapan, Edisi 1. Bengkulu: UNIB Press, 2008.

R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis.: Pearson Prentice Hall, Sixth Edit. upper saddle river: Perason Education Inc, 2007.

W. Widyawati, W. L. Y. Saptomo, and Y. R. W. Utami, “Penerapan Agglomerative Hierarchical Clustering Untuk Segmentasi Pelanggan,” J. Ilm. SINUS, vol. 18, no. 1, p. 75, 2020, doi: 10.30646/sinus.v18i1.448.

U. Wagschal, Cluster analysis. John Wiley & Sons, 2016.

I. Wahyuni and S. P. Wulandari, “Pemetaan Kabupaten/Kota di Jawa Timur Berdasarkan Indikator Kesejahteraan Rakyat Menggunakan Analisis Cluster Hierarki,” J. Sains dan Seni, vol. 11, no. 1, pp. D70–D75, 2022.

S. Kania, D. Rachmatin, and J. A. Dahlan, “Program Aplikasi Pengelompokan Objek Dengan Metode Self Organizing Map Menggunakan Bahasa R,” J. EurekaMatika, vol. 7, no. 2, pp. 17–29, 2019.

M. H. Ghaseminezhad and A. Karami, “A novel self-organizing map (SOM) neural network for discrete groups of data clustering,” Appl. Soft Comput. J., vol. 11, no. 4, pp. 3771–3778, 2011, doi: 10.1016/j.asoc.2011.02.009.

K. Millati, C. Suhaeni, and B. Susetyo, “Penggerombolan Daerah 3T di Indonesia Berdasarkan Rasio Tenaga Kesehatan dengan Metode Penggerombolan Berhierarki dan Cluster Ensemble,” Xplore J. Stat., vol. 10, no. 2, pp. 197–213, 2021, doi: 10.29244/xplore.v10i2.744.

A. Strehl, “Cluster Ensembles – A Knowledge Reuse Framework for,” J. Mach. Learn. Res., vol. 3, pp. 583–617, 2002.

Y. Reinaldi, N. Ulinnuha, and M. Hafiyusholeh, “Comparison of Single Linkage, Complete Linkage, and Average Linkage Methods on Community Welfare Analysis in Cities and Regencies in East Java,” J. Mat. Stat. dan Komputasi, vol. 18, no. 1, pp. 130–140, 2021, doi: 10.20956/j.v18i1.14228.

P. Melin, J. C. Monica, D. Sanchez, and O. Castillo, “Analysis of Spatial Spread Relationships of Coronavirus (COVID-19) Pandemic in the World using Self Organizing Maps,” Chaos, Solitons and Fractals, vol. 138, 2020, doi: 10.1016/j.chaos.2020.109917.

S. Y. Hadist and A. P. Utomo, “Pengelompokan Kabupaten/Kota di Pulau Jawa Berdasarkan Kondisi Sosial Ekonomi Sebelum dan Setelah Memasuki Pandemi COVID-19 Penerapan Metode Cluster Ensemble,” Semin. Nas. Off. Stat., vol. 19, no. 2020, pp. 322–332, 2021.

A. N. Haloho, “RESPON PERTUMBUHAN DAN PRODUKSI KUBIS (Brassica oleraceae.L) DENGAN PEMBERIAN BERBAGAI JENIS DAN DOSIS PUPUK KANDANG,” Agroprimatech, vol. 4, no. 1, pp. 10–17, 2020, doi: 10.34012/agroprimatech.v4i1.1325.

Basri and Syarli, “AHP-Standar Score: Pendekatan Baru Dalam Sistem Pemeringkatan,” J. Keteknikan dan Sains – LPPM UNHAS, vol. 1, no. 1, pp. 1–6, 2018.

R. E. Walpole, R. H. Myers, and Sharon L. Myers Radford, Probability and Statistics, 9th ed. Boston, MA: Pearson Education, Inc., 2012.

J. F. Hair, W. C. Black, B. J. Babin, and R. E. Anderson, “Multivariate Data Analysis,” Polymers, vol. 12, no. 12. Annabel Ainscow, United Kingdom, pp. 1–18, 2019, doi: 10.3390/polym12123016.

J. Costales, J. J. J. Catulay, J. Costales, and N. Bermudez, “Kaiser-Meyer-Olkin Factor Analysis: A Quantitative Approach on Mobile Gaming Addiction using Random Forest Classifier,” ACM Int. Conf. Proceeding Ser., no. March, pp. 18–24, 2022, doi: 10.1145/3546157.3546161.

F. Jabnabillah and N. Margina, “ANALISIS KORELASI PEARSON DALAM MENENTUKAN HUBUNGAN ANTARA MOTIVASI BELAJAR DENGAN KEMANDIRIAN BELAJAR PADA PEMBELAJARAN DARING,” J. Sintak, vol. 1, no. 1, pp. 14–18, 2022.

M. I. R. Suyantiningsih, “KORELASI ANTARA PERSEPSI PENGELOLAAN DAN LAYANAN PUSTAKA DENGAN MOTIVASI BELAJAR DI DIGITAL LIBRARY UNY,” Comput. Handb. Two-Volume Set, vol. 1, pp. 1–23, 2020, doi: 10.1201/b16768-21.

S. Hussain, N. Z. Quazilbash, S. Bai, and S. Khoja, “Reduction of variables for predicting breast cancer survivability using principal component analysis,” Proc. - IEEE Symp. Comput. Med. Syst., vol. 2015-July, pp. 131–134, 2015, doi: 10.1109/CBMS.2015.62.

T. H. Dang, T. D. Pham, H. L. Tran, and Q. Le Van, “Using dimension reduction with feature selection to enhance accuracy of tumor classification,” BME-HUST 2016 - 3rd Int. Conf. Biomed. Eng., pp. 14–17, 2016, doi: 10.1109/BME-HUST.2016.7782082.

M. Z. Nasution, “PENERAPAN PRINCIPAL COMPONENT ANALYSIS (PCA) DALAM PENENTUAN FAKTOR DOMINAN YANG MEMPENGARUHI PRESTASI BELAJAR SISWA (Studi Kasus : SMK Raksana 2 Medan),” J. Teknol. Inf., vol. 3, no. 1, p. 41, 2019, doi: 10.36294/jurti.v3i1.686.

D. P. Isnarwaty and I. Irhamah, “Text Clustering pada Akun TWITTER Layanan Ekspedisi JNE, J&T, dan Pos Indonesia Menggunakan Metode Density-Based Spatial Clustering of Applications with Noise (DBSCAN) dan K-Means,” J. Sains dan Seni ITS, vol. 8, no. 2, pp. 2–9, 2020, doi: 10.12962/j23373520.v8i2.49094.

M. Ozcalici and M. Bumin, “An integrated multi-criteria decision making model with Self-Organizing Maps for the assessment of the performance of publicly traded banks in Borsa Istanbul,” Appl. Soft Comput. J., vol. 90, p. 106166, 2020, doi: 10.1016/j.asoc.2020.106166.

H. Hartatik and A. S. D. Cahya, “Clusterisasi Kerusakan Gempa Bumi di Pulau Jawa Menggunakan SOM,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 2, no. 02, pp. 25–34, 2020, doi: 10.46772/intech.v2i02.286.

R. D. Kusumah, B. Warsito, and M. A. Mukid, “Perbandingan Metode K-Means Dan Self Organizing Map (Studi Kasus: Pengelompokan Kabupaten/Kota Di Jawa Tengah Berdasarkan Indikator Indeks Pembangunan Manusia 2015),” J. Gaussian, vol. 6, no. 3, pp. 429–437, 2017, [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/gaussian.

I. Hidayatin, S. Adinugroho, and C. Dewi, “Pengelompokan Wilayah berdasarkan Penyandang Masalah Kesejahteraan Sosial (PMKS) dengan Optimasi Algoritme K-Means menggunakan Self Organizing Map (SOM),” J. Pengemb. Teknol. Inf. dan Ilmu Kompter, vol. 3, no. 8, pp. 2548–964, 2019, [Online]. Available: http://j-ptiik.ub.ac.id.

E. Fauziyari and D. U. Wustqa, “Pemetaan Kabupaten/Kota di Provinsi Papua Berdasarkan Indikator Daerah Tertinggal Dengan Metode Ensemble Clustering,” J. Stat. Dan Sains Data, vol. 1, pp. 40–55, 2023, [Online]. Available: https://journal.student.uny.ac.id/index.php/jssd.

N. Aini, A. Lestari, M. N. Hayati, F. Deny, and T. Amijaya, “Analisis cluster pada data kategorik dan numerik dengan pendekatan Cluster Ensemble (Studi kasus : puskesmas di Provinsi Kalimantan Timur kondisi Desember 2017),” J. EKSPONENSIAL Vol. 11, vol. 11, pp. 117–126, 2020.

A. Serra and R. Tagliaferri, “Unsupervised learning: Clustering,” Encycl. Bioinforma. Comput. Biol. ABC Bioinforma., vol. 1–3, no. January, pp. 350–357, 2018, doi: 10.1016/B978-0-12-809633-8.20487-1.

X. Z. Fern and W. Lin, “Cluster ensemble selection,” Soc. Ind. Appl. Math. - 8th SIAM Int. Conf. Data Min. 2008, Proc. Appl. Math. 130, vol. 2, pp. 787–797, 2008, doi: 10.1137/1.9781611972788.71.

A. A. Yusfar, M. A. Tiro, and S. Sudarmin, “Analisis Cluster Ensemble dalam Pengelompokan Kabupaten/Kota di Provinsi Sulawesi Selatan Berdasarkan Indikator Kinerja Pembangunan Ekonomi Daerah,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 3, no. 1, p. 31, 2020, doi: 10.35580/variansiunm14626.

Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu, “Understanding of internal clustering validation measures,” Proc. - IEEE Int. Conf. Data Mining, ICDM, pp. 911–916, 2010, doi: 10.1109/ICDM.2010.35.

S. Paembonan and H. Abduh, “Penerapan Metode Silhouette Coefficient untuk Evaluasi Clustering Obat,” PENA Tek. J. Ilm. Ilmu-Ilmu Tek., vol. 6, no. 2, p. 48, 2021, doi: 10.51557/pt_jiit.v6i2.659.

B. Wira, A. E. Budianto, and A. S. Wiguna, “IMPLEMENTASI METODE K-MEDOIDS CLUSTERING UNTUK MENGETAHUI POLA PEMILIHAN PROGRAM STUDI MAHASIWA BARU TAHUN 2018 DI UNIVERSITAS KANJURUHAN MALANG,” RAINSTEK J. Terap. Sains Teknol., vol. 1, no. 3, pp. 53–68, 2019, doi: 10.21067/jtst.v1i3.3046.

A. F. Khairati, A. . Adlina, G. . Hertono, and B. . Handari, “Kajian Indeks Validitas pada Algoritma K-Means Enhanced dan K-Means MMCA,” Prism. Pros. Semin. Nas. Mat., vol. 2, pp. 161–170, 2019, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/article/view/28906.

R. A. Hendrawan, A. Utamima, and D. A. Savitri, “Segmentasi Trafo Lisrik Menggunakan Algoritma K-Means untuk Mendukung Evaluasi Kapasitas Gardu Induk Listrik di Jawa Timur,” J. Sist. Inf., vol. 5, no. 5, pp. 702–707, 2016.

N. N. Halim and E. Widodo, “Clustering dampak gempa bumi di Indonesia menggunakan kohonen self organizing maps,” Pros. SI MaNIS (Seminar Nas. Integr. Mat. dan Nilai Islam., vol. 1, no. 1, pp. 188–194, 2017, [Online]. Available: http://conferences.uin-malang.ac.id/index.php/SIMANIS/article/view/62.

W. D. Ray, P. J. Brockwell, and R. A. Davis, Time Series: Theory and Methods., vol. 153, no. 3. 1990.




DOI: http://dx.doi.org/10.12962/j27213862.v7i2.20378

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats