Generalized Linear Mixed Models for Predicting Non-Life Insurance Claims
Abstract
Keywords
Full Text:
PDFReferences
G. K..Smyth, and B. Jørgensen, “Fitting Tweedie's compound Poisson model to insurance claims data: dispersion modelling,” ASTIN Bulletin: The Journal of the IAA, vol. 32, pp. 143-157, 2002.
P. De Jong, and G. Z. Heller, Generalized linear models for insurance data, Cambridge University Press, 2008.
S. Kafková and L. Křivánková, “Generalized linear models in vehicle insurance,” Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, vol. 62, pp. 383-388, 2014.
E. W. Frees and G. Lee, “Rating endorsements using generalized linear models,” Variance, vol. 10, pp. 51-74, 2015.
M. David, “Auto insurance premium calculation using generalized linear models,” Procedia Economics and Finance, vol. 20, pp. 147-156, 2015.
E. Šoltés, S. Zelinová and M. Bilíková, “General linear model: an effective tool for analysis of claim severity in motor third party liability insurance,” STATISTICS, vol. 13, pp. 13-31, 2019.
T. A. J. Putra, D. C. Lesmana and I. G. P. Purnaba, “Penghitungan Premi Asuransi Kendaraan Bermotor Menggunakan Generalized Linear Models dengan Distribusi Tweedie,” Jambura Journal of Mathematics, vol. 3, pp. 115-127, 2021.
T. Rahmawati, D. Susanti and R. Riaman, “Determining Pure Premium of Motor Vehicle Insurance with Generalized Linear Models (GLM),” International Journal of Quantitative Research and Modeling, vol. 4, pp. 207-214, 2023.
E. W. Frees, G. Lee and L. Yang, “Multivariate frequency-severity regression models in insurance,” Risks, vol. 4, pp. 4, 2016.
C. Dutang and A. Charpentier, “Insurance Datasets,” R package version 1.0-11, 2021
C. G. Giancaterino, "GLM, GNM and GAM Approach on MTPL Pricing," Journal of Mathematics and Statistical Science, vol. 2, pp 427-481, August 2016
R. Oktavia, R. Zuhra, H. Hafnani, N. Nurmaulidar and I. Syahrini, "Application of Poisson and negative binomials models to estimate the frequency of insurance claims," Jurnal Natural, vol. 23, pp. 21-27, 2023.
G. Pernagallo, A. Punzo and B. Torrisi, “Women and insurance pricing policies: a gender-based analysis with GAMLSS on two actuarial datasets,” Scientific Reports, vol. 14, pp. 3239, 2024.
G. Gao and J. Li, “Dependence modeling of frequency-severity of insurance claims using waiting time,” Insurance: Mathematics and Economics, vol. 109, pp. 29-51, 2023.
E. W. Frees and F. Huang, “Online Supplement to: The Discriminating (Pricing) Actuary,” Available at SSRN: https://ssrn.com/abstract=3892473, July 23, 2021.
K. Yau, K. Yip and H. K. Yuen, “Modelling repeated insurance claim frequency data using the generalized linear mixed model,” Journal of Applied Statistics, vol. 30, pp. 857-865, 2003
K. Antonio and J. Beirlant, “Actuarial statistics with generalized linear mixed models,” Insurance: Mathematics and Economics, vol. 40(1), pp. 58-76, 2007.
K. Antonio, E. W. Frees and E. A. Valdez, “A multilevel analysis of intercompany claim counts,” ASTIN Bulletin: The Journal of the IAA, vol. 40, pp. 151-177, 2010.
Y. Kim, Y. K. Choi and S. Emery, “Logistic regression with multiple random effects: a simulation study of estimation methods and statistical packages,” The American Statistician, vol. 67, pp. 171-182, 2013.
S. A. Rohmaniah and N. E. Chandra, “Perhitungan Premi Asuransi Jiwa Menggunakan Generalized Linear Mixed Models,” Jurnal Ilmiah Teknosains, vol. 4, pp. 80-84, 2018
N. Wang, L. Qian, N. Zhang, and Z. Liu, “Modelling the aggregate loss for insurance claims with dependence,” Communications in Statistics-Theory and Methods, vol. 50, pp. 2080-2095, 2021.
C. C. Günther, I. F. Tvete, K. Aas, J. A. Hagen, L. Kvifte and Ø. Borgan, “Predicting Future Claims Among High Risk Policyholders Using Random Effects,” In D. Silvestrov and A. Martin-Löf (Eds.), Modern Problems in Insurance Mathematics, pp. 171-185, 2014.
W. Lee, J. Kim, and J. Y. Ahn, “The Poisson random effect model for experience ratemaking: Limitations and alternative solutions,” Insurance: Mathematics and Economics, vol. 91, pp. 26-36, 2020.
F. A. Farisa, S. N. H. Salby, A. A. Rahman, and P. Purhadi, “Modeling the Number of Pneumonia in Toddlers in East Java Province in 2021 with Generalized Poisson Regression,” Inferensi, vol. 62, pp. 91-96, 2023.
S. Ully, Analisis Dana Pinjaman Pegawai Negeri Sipil Menggunakan Metode Generalized Linear Mixed Model (GLMM) pada Data Longitudinal, Doctoral dissertation, Universitas Andalas, 2021.
P. M. Caçola, and M. D. Pant, “Using a Generalized Linear Mixed Model Approach to Explore the Role of Age, Motor Proficiency, and Cognitive Styles in Children's Reach Estimation Accuracy,” Perceptual and Motor Skills, vol. 119, pp. 530-549, 2014.
A. M. Gad and R. B. El Kholy, “Generalized linear mixed models for longitudinal data,” International Journal of Probability and Statistics, vol. 1, pp. 41-47, 2012.
DOI: http://dx.doi.org/10.12962/j27213862.v7i2.20447
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats