Estimation of Paddy Productivity at Subdistrict Level using Geoadditive Small Area Estimation Model in Ponorogo Regency
Abstract
Paddy is the most important food crop in the world and it is the source of food needed by more than half of the population on a global scale. However, the world is experiencing the threat of a food crisis, so the Indonesian government continues to be committed to increasing national paddy production and ensuring food sufficiency in the country by implementing food self-sufficiency programs in each region. Paddy productivity data can be used as one of the government's benchmarks to assess the success of the food self-sufficiency program, but BPS-Statistics Indonesia only provides data on paddy productivity up to the district/cities level. Therefore, this study aims to estimate paddy productivity at sub-district level using the Geo-SAE method. Based on the research results, the estimation of the average paddy productivity in Ponorogo Regency in 2022 using Geo-SAE was obtained at 5.8 tons/ha and resulted in a smaller RSE value compared to the direct estimation at sub-district level. This indicates that the Geo-SAE method has better precision than the direct estimation method. Meanwhile, additional result from estimation of paddy productivity shows that in Ponorogo Regency in 2022 there is a large rice surplus. Therefore, it can be said that Ponorogo Regency is experiencing a very good food sufficiency condition.
Keywords
Full Text:
PDFReferences
Dinas Ketahanan Pangan, Tanaman Pangan dan Hortikultura Provinsi Lampung, “Jenis-Jenis Padi,” Dinas Ketahanan Pangan, Tanaman Pangan dan Hortikultura Provinsi Lampung, 2024.
USDA, Rice Outlook 2022. Washington D.C.: United States Department of Agriculture, 2023.
USDA, Rice Crop Production 2022. Washington D.C.: United States Department of Agriculture, 2022.
M. A. Rizaty, “Konsumsi Beras Penduduk Asia Tertinggi di Dunia,” Databoks, Jakarta, Feb. 12, 2021.
BPS RI, Ringkasan Pengeluaran untuk Konsumsi Penduduk Indonesia 2022. Jakarta: Badan Pusat Statistik, 2023.
R. A. Nugroho, “RI Ternyata Bergantung Beras ke 4 Negara Ini,” CNBC Indonesia, Jakarta, Jan. 15, 2024.
E. Yanwardhana, “Kenapa RI Masih Impor Beras?” CNBC Indonesia, Jakarta, Jan. 02, 2024.
Kementan RI, Kebijakan Penyelamat Swasembada Pangan. Jakarta: Kementerian Pertanian, 2018.
M. Ardiansyah, A. Djuraidah, and A. Kurnia, “Pendugaan Area Kecil Data Produktivitas Padi dengan Geoadditive Small Area Model,” Jurnal Penelitian Pertanian Tanaman Pangan, 2(2), 101. https://doi.org/10.21082/jpptp.v2n2.2018.p101-110, 2018.
N. Chand, and C. H. Alexander. Using Administrative Records for Small Area Estimation in the American Community Survey. Maryland, United States: U.S. Bureau of the Cencus, 1995.
G. F. Santoso and S. Muchlisoh, “Estimasi Produktivitas Padi Level Kecamatan di Kabupaten Tulungagung Menggunakan Geoadditive SAE,” Jurnal Aplikasi Statistika & Komputasi Statistik, vol. 12, no. 3, pp. 23–36, 2022, doi: https://doi.org/10.34123/jurnalasks.v14i1.385.
N. H. Pusponegoro, A. Djuraidah, A. Fitrianto, and I. M. Sumertajaya, “Geo-additive Models in Small Area Estimation of Poverty”. Journal of Data Science and Its Applications, 2(1), 59–67. https://doi.org/10.21108/jdsa.2019.2.15, 2019.
BPS RI, Luas Panen dan Produksi Padi di Indonesia 2022. Jakarta: Badan Pusat Statistik, 2023.
BPS Jawa Timur, Ringkasan Eksekutif Luas Panen dan Produksi Padi di Jawa Timur 2022. Surabaya: Badan Pusat Statistik Provinsi Jawa Timur, 2023.
BPS Ponorogo, Kabupaten Ponorogo Dalam Angka 2022. Ponorogo: Badan Pusat Statistik Kabupaten Ponorogo, 2023.
BPS RI, Buku Pedoman Pengumpulan Data Survei Ubinan Tanaman Pangan 2018. Jakarta: Badan Pusat Statistik, 2018.
Rao, and I. Molina, Small Area Estimation Second Edition. New Jersey: John Wiley & Sons, Inc., 2015.
E. E. Kammann, & M. P. Wand. Geoadditive Models. Journal of the Royal Statistical Society. Series C, Applied Statistics, 52(1), 1–18, 2003, doi.org/10.1111/1467-9876.00385.
Shan Yu, G. Wang, Li Wang, C. Liu & L. Yang, “Estimation and Inference for Generalized Geoadditive Models,” Journal of the American Statistical Association, 2019, doi: https://doi.org/10.1080//01621459.2019.1574584.
C. Bocci, Geoadditive Models for Data with Spatial Information. Florence: University of Florence, 2009.
D. Ruppert, M. P. Wand, and R. J. Carroll, Semiparametric Regression. New York: Cambridge University Press, 2003.
F. Apriani, “Pemodelan Pengeluaran per Kapita Menggunakan Small Area Estimation dengan Pendekatan Semiparametrik Penalized Spline,” Thesis, Institut Teknologi Sepuluh Nopember, Surabaya, 2017.
A. Kurnia, “Prediksi Terbaik Empirik untuk Model Transformasi Logaritma di dalam Pendugaan Area Kecil dengan Penerapan pada Data Susenas,” Thesis, Institut Pertanian Bogor, Bogor, 2009.
A. Petrucci and M. Pratesi, “Spatial Models in Small Area Estimation in the Context of Official Statistics”. Statistica Applicata - Italian Journal of Applied Statistics, 24(1), 9-27, 2014.
Biemer, P. P., & Lyberg, L. E, Introduction to Survey Quality. Hoboken: John Wiley & Sons, Inc., 2003.
H. J. Miller, “Tobler’s First Law and Spatial Analysis.” Annals of the Association of American Geographers, vol. 94, no. 2, June 2004, pp. 284–289, https://doi.org/10.1111/j.1467-8306.2004.09402005.x.
DOI: http://dx.doi.org/10.12962/j27213862.v7i3.20505
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats