A Nonparametric Regression Approach Address Poverty Problems in East Nusa Tenggara Province

Narita Yuri Adrianingsih, Mariana Mungkabel, Andrea Tri Rian Dani, Ludia Ni'matuzzahroh

Abstract


The administration is focused on reducing poverty, which is still a significant issue. Since the regression curve is unknown and the truncated spline nonparametric regression approach offers a high degree of flexibility, the study was conducted to determine what factors influence it, particularly in the East Nusa Tenggara area. The goal of this study is to develop a nonparametric regression model. The average length of schooling, life expectancy, percentage of the illiterate population aged 15 and over, labor force participation rate, percentage of households based on the information source, and population density affect poverty in the East Nusa Tenggara area. With a minimum GCV of 39.57, it was determined that 1 knot point were the ideal knot point. To some extent, the characteristics that influenced poverty were life expectancy, labor force participation rate, percentage of households with a proper light source, and population density. The best model met these criteria with an R2 of 81.28%. The findings suggest that targeted interventions to improve these factors can significantly reduce poverty in East Nusa Tenggara.

Keywords


poverty; East Nusa Tenggara; nonparametric regression; spline truncated

Full Text:

PDF

References


BAPPEDA, “Habis MDGs Terbitlah SDGs: Menuju Pembangunan yang Berkelanjutan,” 2024.

I. Y. Prasada, T. F. M. Yulhar, and T. A. Rosa, “Determinants of poverty rate in Java Island: Poverty alleviation policy,” Jurnal Ekonomi Pembangunan, vol.18(2), pp. 95–104, Dec. 2020. https://doi.org/10.29259/jep.v18i2.11664 

N. A. Fajriah, “Analysis Of The Effect Of Gross Regional Domestic Product, Number Of Population, Regional Minimum Wage, Open Unemployment Rate, And Human Development Index On Poverty In 2010-2020 East Java Province,” Jurnal Ilmu Ekonomi Terapan, vol.6(2), pp. 171–187, Nov. 2021. https://doi.org/10.20473/jiet.v6i2.27778 

  BPS, “Profil Kemiskinan di Indonesia Maret 2023,” in BRS No. 47/07/Th. XXVI. Badan Pusat Statistik, 2023. 

https://www.bps.go.id/id/pressrelease/2023/07/17/2016/profil-kemiskinan-di-indonesia-maret-2023.html 

L. Priseptian and W. P. Primandhana, “Analisis faktor-faktor yang mempengaruhi kemiskinan,” FORUM EKONOMI: Jurnal Ekonomi, Manajemen dan Akuntansi, vol.24(1), pp. 45–53, 2022. https://doi.org/10.30872/jfor.v24i1.10362  

R. Giovanni, “Analisis Pengaruh PDRB, Pengangguran dan Pendidikan Terhadap Tingkat Kemiskinan di Pulau Jawa Tahun 2009-2016,” Economics Development Analysis Journal, vol.7(1), pp. 23–31, Feb. 2018. https://doi.org/10.15294/edaj.v7i1.21922   

E. R. Laoh, J. B. Kalangi, and H. F. Dj. Siwu, “Pengaruh Produk Domestik Regional Bruto (PDRB) dan Indeks Pembangunan Manusia (IPM) Terhadap Kemiskinan di Kabupaten Bolaang Mongondow,” Jurnal Berkala Ilmiah Efisiensi, vol.23(1), pp. 85–96, Jan 2023. 

S. P. Marmujiono, “Analisis Faktor-Faktor Yang Mempengaruhi Tingkat Kemiskinan Dan Strategi Pengentasan Kemiskinan Di Kab. Brebes Tahun 2009-2011,” Economics Development Analysis Journal, vol.3(1), pp. 159–172, April 2014. 

https://doi.org/10.15294/edaj.v3i1.3521 

M. Rifada, N. Chamidah, R. A. Ningrum, and L. Muniroh, “Stunting Determinants Among Toddlers In Probolinggo District Of Indonesia Using Parametric And Nonparametric Ordinal Logistic Regression Models,” Communications in Mathematical Biology and Neuroscience, vol.2023, Jan. 2023. https://doi.org/10.28919/cmbn/6690 

T. Purnaraga, S. Sifriyani, and S. Prangga, “Regresi Nonparamaetrik Spline Pada Data Laju Pertumbuhan Ekonomi Di Kalimantan,” BAREKENG: Jurnal Ilmu Matematika Dan Terapan, vol.14(3), pp. 343–356, Oct. 2020. 

https://doi.org/10.30598/barekengvol14iss3pp343-356 

A. T. R. Dani, L. Ni’matuzzahroh, V. Ratnasari, and I. N. Budiantara, “Pemodelan Regresi Nonparametrik Spline Truncated pada Data Longitudinal,” INFERENSI, vol.4(1), pp. 47–55, March 2021. https://doi.org/10.12962/j27213862.v4i1.8737 

A. T. R. Dani and N. Y. Adrianingsih, “Pemodelan Regresi Nonparametrik dengan Estimator Spline Truncated vs Deret Fourier,” Jambura Journal of Mathematics, vol.3(1), pp. 26–36, Jan. 2021. https://doi.org/10.34312/jjom.v3i1.7713 

C. N. Sholicha, I. N. Budiantara, and M. Ratna, “Regresi Nonparametrik Spline Truncated untuk Memodelkan Persentase Unmet Need di Kabupaten Gresik,” JURNAL SAINS DAN SENI ITS, vol.7(2), pp. D61–D68, 2018. 

W. Hardle, “Applied Nonparametric Regression,” Cambridge: Cambridge University Press, 1990.

I. P. Merdekawati and I. N. Budiantara, “Pemodelan Regresi Spline Truncated Multivariabel pada Faktor-Faktor yang Mempengaruhi Kemiskinan di Kabupaten/Kota Provinsi Jawa Tengah,” JURNAL SAINS DAN SENI ITS, vol.2(1), pp. D19–D24, 2013. 

A. S. Rahmawati, D. Ispriyanti, and B. Warsito, “Pemodelan Kasus Kemiskinan Di Jawa Tengah Menggunakan Regresi Nonparametrik Metode B-Spline,” Jurnal Gaussian, vol.6(1), pp. 11–20, Jan. 2017. https://doi.org/10.14710/j.gauss.6.1.11-20 

U. Resiloy, G. Haumahu, V. Y. I. Ilwaru, and J. E. T. Radjabaycolle, “Spline Modeling of The Percentage of The Poor People in Maluku using Spline Nonparametric Regression,” Jurnal Parameter, vol.1(2), pp. 123–128, 2022.

R. Tediwibawa, D. Yuniarti, and M. N. Hayati, “Regresi Nonparametrik Spline Birespon Untuk Memodelkan Persentase Penduduk Miskin dan Indeks Kedalaman Kemiskinan di Kalimantan Timur Tahun 2015,” Jurnal EKSPONENSIAL, vol.10(1), pp. 21–28, May 2019. 

N. Draper and H. Smith, “Analisis Regresi Terapan,” Jakarta: PT Gramedia Pustaka, 1992.

R. L. Eubank, “Nonparametric Regression and Spline Smoothing,” New York: Marcel Dekker, 1999.

I. N. Budiantara et al., “Modeling Percentage of Poor People In Indonesia Using Kernel and Fourier Series Mixed Estimator In Nonparametric Regression,” REVISTA INVESTIGACION OPERACIONAL, vol. 40, no. 4, pp. 538–550, 2019.

A. T. R. Dani and L. Ni’matuzzahroh, “ Pemodelan Persentase Penduduk Miskin Kabupaten/Kota di Provinsi Jawa Barat dengan Pendekatan Regresi Nonparametrik Spline Truncated,” J Statistika, vol.14(1), pp. 24–29, July 2021. https://doi.org/10.36456/jstat.vol14.no1.a3840  

S. Sifriyani, A. T. R. Dani, M. Fauziyah, and I. N. Budiantara, “Statistical Modeling: A New Regression Curve Approximation using Mixed Estimators Truncated Spline and Epanechnikov Kernel,” Engineering Letters, vol. 31, no. 4, pp. 1–7, 2023.

L. Ni’matuzzahroh and A. T. R. Dani, “Pemodelan Rata-Rata Lama Sekolah di Provinsi Nusa Tenggara Timur (NTT) Menggunakan Pendekatan Regresi Nonparametrik Spline Truncated,” Prosiding Seminar Nasional Matematika, Statistika, dan Aplikasinya, vol.2, pp. 289–301, May 2022. 




DOI: http://dx.doi.org/10.12962/j27213862.v8i1.20508

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats