Topic Modelling of Merdeka Belajar Kampus Merdeka Policy Using Latent Dirichlet Allocation
Abstract
Topic modeling is the process of representing the topics discussed in text documents. In the current era of internet technology development, digital data is growing increasingly large, including tweet data from Twitter. This research aims to obtain topic modeling related to the Merdeka Belajar Kampus Merdeka policy on Twitter, which has been classified into positive and negative sentiments. The topic modeling method used is Latent Dirichlet Allocation (LDA). This method is for summarizing, clustering, connecting, or processing data from a list of topics. The data used in this research are tweets with the keyword "Kampus Merdeka" uploaded on Twitter. A total of 1579 tweets with these keywords were classified into 648 tweets and 931 tweets, respectively, with positive and negative sentiments. Each tweet with positive and negative sentiment produces 5 topics with parameter values α and β of 0.1. The coherence value in topic modeling for tweets with a positive sentiment (0.44) is more significant than for tweets with a negative sentiment (0.38) and represent for drawing conclusions about topics based on relationship between keywords in negative sentiment is more challenging compared to those in positive sentiment to the Merdeka Belajar Kampus Merdeka policy on Twitter.
Keywords
Full Text:
PDFReferences
V. Dhawan and N. Zanini, “Big Data and Social Media,” Research Matters: A Cambridge Assessment Publication, vol. 18, pp. 36–41, 2014.
U. Sivarajah, Z. Irani, S. Gupta, and K. Mahroof, “Role of big data and social media analytics for business to business sustainability: A participatory web context,” Industrial Marketing Management, vol. 86, pp. 163–179, Apr. 2020, doi: 10.1016/j.indmarman.2019.04.005.
A. M. Zuhdi, E. Utami, and S. Raharjo, “Analisis Sentiment Twitter Terhadap Capres Indonesia 2019 Dengan Metode K-NN,” Jurnal Informa: Jurnal Penelitian dan Pengabdian Masyarakat, vol. 5, no. 2, pp. 2442–7942, 2019.
T. Kurniawan, “Implementasi Text Mining Pada Analisis Sentimen Pengguna Twitter Terhadap Media Mainstream Menggunakan Naive Bayes Classifier dan Support Vector Machine,” Institut Teknologi Sepuluh November, Surabaya, 2017.
H. Prabowo, “Pro dan Kontra atas Kebijakan ‘Kampus Merdeka’ Nadiem.”
P. Madzík, L. Falát, and D. Zimon, “Supply chain research overview from the early eighties to Covid era–Big data approach based on Latent Dirichlet Allocation,” Comput Ind Eng, 2023.
P. Madzik, L. Falat, L. Jum’a, M. Vrábliková, and D. Zimon, “Human-centricity in Industry 5.0–revealing of hidden research topics by unsupervised topic modeling using Latent Dirichlet Allocation,” European Journal of Innovation Management, 2024.
P. Kherwa and P. Bansal, “Topic Modeling: A Comprehensive Review”, EAI Endorsed Transactions on Scalable Information Systems, vol. 7, no. 24, pp. 1–16, 2020.
D.K. Bustami and S. Noviaristanti, “Service Quality Analysis of Tokopedia Application Using Text Mining Method”, International Journal of Management, Finance and Accounting, vol. 3, no. 1, pp. 1–21, 2022.
S. Zhou, P. Kan, Q. Huang, and J. Silbernagel, “A guided latent Dirichlet allocation approach to investigate real-time latent topics of Twitter data during Hurricane Laura,” J Inf Sci, vol. 49, no. 2, pp. 465–479, 2023.
P. Madzík, L. Falát, and D. Zimon, “Supply chain research overview from the early eighties to Covid era–Big data approach based on Latent Dirichlet Allocation,” Comput Ind Eng, 2023.
F. F. Rachman and S. Pramana, “Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter,” Indonesian of Health Information Management Journal (INOHIM), vol. 8, no. 2, pp. 100–109, 2020.
I. M. K. B. Putra and R. P. Kusumawardani, “Analisis Topik Informasi Publik Media Sosial di Surabaya Menggunakan Pemodelan Latent Dirichlet Allocation (LDA),” Jurnal Teknik ITS, vol. 6, no. 2, pp. 311–316, 2017.
D. Marutho and N. A. Setiyanto, “Comprehensive Exploration of Machine and Deep Learning Classification Methods for Aspect-Based Sentiment Analysis with Latent Dirichlet Allocation Topic Modeling,” Journal of Future Artificial Intelligence and Technologies, vol. 1, no. 1, 2024.
K.H. Musliadi, H. Zainuddin and Y. Wabula, “Twitter Social Media Conversion Topic Trending Analysis Using Latent Dirichlet Allocation Algorithm”, Journal of Applied Engineering and Technological Science (JAETS), vol. 4, no. 1, pp. 390–399, 2022.
F. Gurcan, O. Ozyurt, and N. E. Cagitay, “Investigation of Emerging Trends in the E-Learning Field Using Latent Dirichlet Allocation,” The International Review of Research in Open and Distributed Learning, vol. 22, no. 2, pp. 1–18, Jan. 2021, doi: 10.19173/irrodl.v22i2.5358.
J. Stolee, “An Evaluation of Topic Modelling Techniques for Twitter”, Research Paper, pp. 1-11, 2016
L. Yao et al., “Incorporating Knowledge Graph Embeddings into Topic Modeling,” 2017. [Online]. Available: www.aaai.org
J. Ipmawati, Kusrini, and E. T. Luthfi, “Komparasi Teknik Klasifikasi Teks Mining Pada Analisis Sentimen,” Indonesian Journal on Networking and Security, vol. 6, no. 1, pp. 28–36, 2017.
DOI: http://dx.doi.org/10.12962/j27213862.v7i3.20602
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats