Implementing Markov Switching Regression Using Best Subset Approach For BSI Stock Price Prediction Analysis

Denny Nurdiansyah, Mochamad Nizar Palefi Ma'ady, Lulud Wijayanti, Diah Ayu Novitasari, Siti Rohmawati

Abstract


Stocks are evidence of ownership of the capital or funds of a company or institution and are represented by a document that includes the par value, the company name, and the rights and obligations described for each owner. Since so many factors affect the rise and fall of stock prices, investors should pay attention to the factors that influence the rise and fall of stock prices to avoid incurring losses or profits when buying and selling stocks. The rise and fall of stock prices can be analyzed with Markov switching regression by trying all possible placements of factors to get the best subset. Public holdings will continue to increase due to nation-building and Sharia Bank Indonesia (BRIS) stock price appreciation. This study aims to determine the impact of increases and decreases in the closing price of BSI stock. The modeling used in this study is Markov switching regression using the best subset approach. The data used in this study are secondary in the form of daily data for the closing price of Bank Syariah Indonesia shares, Inflation, BI Rate, Selling Exchange Rate, Money Supply, and Gross Domestic Product (GDP). Data are obtained from the official BPS website. The results of this study show that Markov switching regression modeling can identify the feasibility of regimes as "bull" and "bear" periods. State 2 indicates an uptrend or "bullish," and state 1 indicates a downtrend or "bearish." The best subset approach obtains the best model with the lowest SSE value. The study concluded that the statistical modeling results of  BSI stock's closing prices during "bull" and "bear" periods provide significant predictors: BI Rate, Selling Exchange Rate, and Money Supply.

Keywords


Close Price; Macroeconomics; Markov Switching Regression; Best Subset

Full Text:

PDF

References


N. Véron and G. B. Wolff, “Capital Markets Union: A Vision for the Long Term,” J. Financ. Regul., vol. 2, no. 1, pp. 130–153, Mar. 2016, doi: 10.1093/jfr/fjw006.

J. T. Lindblad, “Foreign Direct Investment in Indonesia: Fifty Years of Discourse,” Bull. Indones. Econ. Stud., vol. 51, no. 2, pp. 217–237, May 2015, doi: 10.1080/00074918.2015.1061913.

V. Ivashina, B. Iverson, and D. C. Smith, “The ownership and trading of debt claims in Chapter 11 restructurings,” J. financ. econ., vol. 119, no. 2, pp. 316–335, Feb. 2016, doi: 10.1016/j.jfineco.2015.09.002.

Hanum Kusuma Dewi, “Pasar Modal Indonesia 2022: Rekor Indeks Saham hingga Jumlah Investor Tembus 10,3 Juta,” Bareksa.com, 2022.

E. Nurmutia, “Intip Harga Saham Bank Syariah Indonesia Hari Ini 6 Maret 2023,” Liputan6.com, 2023.

S. Hidayat and A. Fageh, “The Merger of State-Owned Enterprises of Bank Syariah Indonesia in Positive Legal Review and Maqashid Syariah,” IQTISHADIA J. Ekon. Perbank. Syariah, vol. 9, no. 2, pp. 180–191, Nov. 2022, doi: 10.19105/iqtishadia.v9i2.6547.

A. Malik, “Kabar Bank Asing akan Masuk Buat Saham BRIS Melesat, 7 Reksadana Ini Punya Asetnya,” Bareksa.com, 2023.

M. I. Nor, T. A. Masron, and T. T. Y. Alabdullah, “Macroeconomic Fundamentals and the Exchange Rate Volatility: Empirical Evidence From Somalia,” SAGE Open, vol. 10, no. 1, p. 215824401989884, Jan. 2020, doi: 10.1177/2158244019898841.

M. N. Hidayah, “Analisis Dampak Variabel Makro Ekonomi Terhadap Indeks Saham Syariah Indonesia,” pp. 1–9, 2011.

I. GOLDSTEIN and C. HUANG, “Credit Rating Inflation and Firms’ Investments,” J. Finance, vol. 75, no. 6, pp. 2929–2972, Dec. 2020, doi: 10.1111/jofi.12961.

2021 Yubiharto et al., “Faktor Ekonimi Makro Terhadap Indeks Harga Saham Gabungan (IHSG) Di Bursa Efek Indonesia Periode 2015-2019,” 2021, doi: https://doi.org/10.52659/medikonis.v12i2.44.

D. Indrajaya, “Relationship of Inflation, BI Rate and Deposit Interest Rate,” Ekon. Keuangan, Investasi dan Syariah, vol. 3, no. 3, Feb. 2022, doi: 10.47065/ekuitas.v3i3.1108.

Z. ALAM and K. RASHID, “Time Series Analysis of the Relationship between Macroeconomic Factors and the Stock Market Returns in Pakistan,” J. Yaşar Univ., vol. 9, no. 36, Jan. 2015, doi: 10.19168/jyu.55431.

D. Hooks, Z. Davis, V. Agrawal, and Z. Li, “Exploring factors influencing technology adoption rate at the macro level: A predictive model,” Technol. Soc., vol. 68, p. 101826, Feb. 2022, doi: 10.1016/j.techsoc.2021.101826.

U. E. Uzoma and A. U. Florence, “Application of Markov-Switching Regression Model on Economic Variables,” vol. 5, no. 2, pp. 17–30, 2016.

A. Rahman, M. A. Khan, and L. Charfeddine, “Regime-specific impact of financial reforms on economic growth in Pakistan,” J. Policy Model., vol. 43, no. 1, pp. 161–182, Jan. 2021, doi: 10.1016/j.jpolmod.2020.10.006.

F. Anggana, D. Devianto, and F. Yanuar, “Pemodelan Markov Switching Autoregressive ( Msar ) Pada Inflasi Dki Jakarta,” vol. 12, no. 1, pp. 35–45, 2023, doi: 10.25077/jmua.12.1.35-45.2023.

D. R. Saleh, A. Hanif, H. Fitriyah, and S. Biduri, “Analisis Prediktor Rasio Keuangan Terbaik Terhadap Harga Saham Dengan Metode Best Subset Selection (Studi Pada Perusahaan yang Terindes di IDXHIDIV20 Bursa Efek Indonesia Periode 2018-2020),” J. Akuntasi Integr., vol. 8, no. 5, pp. 213–235, 2022, doi: 10.2207/jjws.91.328.

S. Inayati, N. Iriawan, and I. Irhamah, “A Markov Switching Autoregressive Model with Time-Varying Parameters,” Forecasting, vol. 6, no. 3, pp. 568-590, 2024, doi: https://doi.org/10.3390/forecast6030031.

D. Nurdiansyah and A. Y. Kartini, “Algoritma Generalized Reduced Gradient Berbasis Markov-Switching Model Untuk Optimisasi Portofolio Saham Perbankan Di Indonesia,” Media Bina Ilm., vol. 14, no. 2, pp. 2095–2108, 2019, doi: https://doi.org/10.33758/mbi.v14i2.369.




DOI: http://dx.doi.org/10.12962%2Fj27213862.v8i2.21030

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats