Effectiveness of GPCA in Reducing Data Dimensions and its Application to Human Development Dimension Indicators Data
Abstract
Keywords
Full Text:
PDFReferences
A. Genender-Feltheimer, “Visualizing high dimensional and big data,” Procedia Comput. Sci., vol. 140, pp. 112–121, 2018, doi: 10.1016/j.procs.2018.10.308.
K. Keerthi Vasan and B. Surendiran, “Dimensionality reduction using Principal Component Analysis for network intrusion detection,” Perspect. Sci., vol. 8, pp. 510–512, 2016, doi: 10.1016/j.pisc.2016.05.010.
L. C. Djoufack Nkengfack, D. Tchiotsop, R. Atangana, B. S. Tchinda, V. Louis-Door, and D. Wolf, “A comparison study of polynomial-based PCA, KPCA, LDA and GDA feature extraction methods for epileptic and eye states EEG signals detection using kernel machines,” Informatics Med. Unlocked, vol. 26, pp. 1–16, 2021, doi: 10.1016/j.imu.2021.100721.
J. Ye, R. Janardan, and Q. Li, “GPCA: an efficient dimension reduction scheme for image compression and retrieval,” Proc. tenth ACM SIGKDD Int. Conf. Knowl. Discov. data Min., pp. 354–363, 2004, doi: 10.1145/1014052.1014092.
J. Ye, “Generalized low rank approximations of matrices,” Mach. Learn., vol. 61, pp. 167–191, 2005, doi: 10.1007/s10994-005-3561-6.
S. Jiarong, W. Yang, and X. Zheng, “Robust generalized low rank approximations of matrices,” PLoS One, vol. 10, no. 9, pp. 1–23, 2015, doi: 10.1371/journal.pone.0138028.
Y. Chen et al., “Face identification with top-push constrained generalized low-rank approximation of matrices,” IEEE Access, vol. 7, pp. 160998–161007, 2019, doi: 10.1109/ACCESS.2019.2947164.
H. Itoh, A. Imiya, and T. Sakai, “Dimension reduction and construction of feature space for image pattern recognition,” J. Math. Imaging Vis., vol. 56, pp. 1–31, 2016, doi: 10.1007/s10851-015-0629-1.
J. Ye, R. Janardan, and S. Kumar, “Biological Image Analysis via Matrix Approximation,” in Encyclopedia of Data Warehousing and Mining, Second Edition, 2008, pp. 166–170. doi: 10.4018/9781605660103.ch027.
Z. Li, Z. Hu, F. Nie, R. Wang, and X. Li, “Multi-view Clustering based on Generalized Low Rank Approximation,” Neurocomputing, vol. 471, pp. 251–259, 2022, doi: 10.1016/j.neucom.2020.08.049.
S. Ahmadi and M. Rezghi, “Generalized low-rank approximation of matrices based on multiple transformation pairs,” Pattern Recognit., vol. 108, pp. 1–16, 2020, doi: 10.1016/j.patcog.2020.107545.
BPS, Indeks pembangunan manusia 2019. Jakarta: Badan Pusat Statistik, 2020.
BPS, Indeks Pembangunan Manusia 2020. Jakarta: Badan Pusat Statistik, 2021.
BPS, Indeks Pembangunan Manusia 2021. Jakarta: Badan Pusat Statistik, 2022.
BPS, Indeks Pembangunan Manusia 2022. Jakarta: Badan Pusat Statistik, 2023.
I. T. Jolliffe and J. Cadima, “Principal component analysis : a review and recent developments,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 374, pp. 1–16, 2016, [Online]. Available: https://doi.org/10.1098/rsta.2015.0202
N. Salem and S. Hussein, “Data dimensional reduction and principal components analysis,” Procedia Comput. Sci., vol. 163, pp. 292–299, 2019, doi: 10.1016/j.procs.2019.12.111.
R. Nariswari, T. S. Prakoso, N. Hafiz, and H. Pudjihastuti, “Biplot analysis: A study of the change of customer behaviour on e-commerce,” Procedia Comput. Sci., vol. 216, pp. 524–530, 2023, doi: 10.1016/j.procs.2022.12.165.
S. Gardner, N. J. Le Roux, and C. Aldrich, “Process data visualisation with biplots,” Miner. Eng., vol. 18, pp. 955–968, 2005, doi: 10.1016/j.mineng.2004.12.010.
J. C. Gower, “Procrustes Analysis,” in International Encyclopedia of the Social & Behavioral Sciences, Second Edi., vol. 19, Elsevier, 2015, pp. 79–81. doi: 10.1016/B978-0-08-097086-8.43078-3.
J. L. Kern, “On the Correspondence Between Procrustes Analysis and Bidimensional Regression,” J. Classif., vol. 34, pp. 35–48, 2017, doi: 10.1007/s00357-017-9224-z.
T. Bakhtiar and S. Siswadi, “Orthogonal procrustes analysis : Its transformation arrangement and minimal distance,” Int. J. Appl. Math. Stat., vol. 20, no. M11, pp. 16–24, 2011.
R. Cantó, M. J. Peláez, and A. M. Urbano, “Full rank Cholesky factorization for rank deficient matrices,” Appl. Math. Lett., vol. 40, pp. 17–22, 2015, doi: 10.1016/j.aml.2014.09.001.
M. Amini Omam and F. Torkamani-Azar, “Noise adjusted version of generalized principal component analysis,” Turkish J. Electr. Eng. Comput. Sci., vol. 24, pp. 50–60, 2016, doi: 10.3906/elk-1303-151.
S. Chenouri, J. Liang, and C. G. Small, “Robust dimension reduction,” Wiley Interdiscip. Rev. Comput. Stat., vol. 7, pp. 63–69, 2015, doi: 10.1002/wics.1331.
J. C. Gower, N. J. Le Roux, and S. Gardner-Lubbe, “Biplots: quantitative data,” Wiley Interdiscip. Rev. Comput. Stat., vol. 7, pp. 42–62, 2015, doi: 10.1002/wics.1338.
DOI: http://dx.doi.org/10.12962/j27213862.v7i3.21506
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats