The Continuum Regression Analysis with Preprocessed Variable Selection LASSO and SIR-LASSO
Abstract
Keywords
Full Text:
PDFReferences
K. Lakshmi, B. Mahaboob, M. Rajaiah, and C. Narayana, “Ordinary least squares estimation of parameters of linear model,” Journal of Mathematical and Computational Science, vol. 11, no. 2, pp. 2015–2030, 2021, doi: 10.28919/jmcs/5454.
M. Tsagris and N. Pandis, “Multicollinearity,” May 01, 2021, NLM (Medline). doi: 10.1016/j.ajodo.2021.02.005.
X. Chen and L. P. Zhu, “Connecting continuum regression with sufficient dimension reduction,” Stat Probab Lett, vol. 98, pp. 44–49, Mar. 2015, doi: 10.1016/j.spl.2014.12.007.
M. Stone and R. J. Brooks, “Continuum regression: cross‐validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 52, no. 2, pp. 237–258, 1990.
K. Setiawan Notodiputro, “Regresi Kontinum dengan Prapemrosesan Transformasi Wavelet Diskret (Continum Regression with Discrete Wavelet Transformation Preprocessing),” Jurnal ILMU DASAR, vol. 8, no. 2, pp. 103-109, 2007.
S. M. Ajeel and H. A. Hashem, “Comparison Some Robust Regularization Methods in Linear Regression via Simulation Study,” Academic Journal of Nawroz University, vol. 9, no. 2, p. 244, Aug. 2020, doi: 10.25007/ajnu.v9n2a818.
S. Sivaranjani, S. Ananya, J. Aravinth, and R. Karthika, “Diabetes Prediction using Machine Learning Algorithms with Feature Selection and Dimensionality Reduction,” in 2021 7th International Conference on Advanced Computing and Communication Systems, ICACCS 2021, Institute of Electrical and Electronics Engineers Inc., Mar. 2021, pp. 141–146. doi: 10.1109/ICACCS51430.2021.9441935.
A. Arwini, A. H. Wigena, and A. Mohamad Soleh, “Continuum Regression Modeling with LASSO to Estimate Rainfall,” 2020. doi: 10.29322/ijsrp.10.10.2020.p10651.
R. Tibshirani, “Regression shrinkage and selection via the lasso,” J R Stat Soc Series B Stat Methodol, vol. 58, no. 1, pp. 267–288, 1996.
S. Agus Mohammad and Aunuddin, “LASSO: SOLUSI ALTERNATIF SELEKSI PEUBAH DAN PENYUSUTAN KOEFISIEN MODEL REGRESI LINIER,” Forum Statistika Dan Komputasi, vol. 18, no. 1, 2013.
K.-C. Li, “Sliced inverse regression for dimension reduction,” J Am Stat Assoc, vol. 86, no. 414, pp. 316–327, 1991.
A. F. Fikri, W. Agwil, and D. Agustina, “PERFORMA TEKNIK REGULARISASI DALAM PENANGANAN MASALAH MULTIKOLINIERITAS,” Journal UNIB, vol.2, no. 1, pp. 45-51, 2022. [Online]. Available: https://ejournal.unib.ac.id/diophantine, 2022. [Online]. Available: https://ejournal.unib.ac.id/diophantine,
Y. Tu, Y. S. Hung, L. Hu, and Z. Zhang, “PCA-SIR: a new nonlinear supervised dimension reduction method with application to pain prediction from EEG,” in 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), IEEE, 2015, pp. 1004–1007.
Q. Lin, Z. Zhao, and J. S. Liu, “Sparse Sliced Inverse Regression via Lasso,” J Am Stat Assoc, vol. 114, no. 528, pp. 1726–1739, Oct. 2019, doi: 10.1080/01621459.2018.1520115.
S. Girard, H. Lorenzo, and J. Saracco, “Advanced topics in Sliced Inverse Regression,” J Multivar Anal, vol. 188, 2022, doi: 10.1016/j.jmva.2021.104852ï.
L. Li and X. Yin, “Sliced inverse regression with regularizations,” Biometrics, vol. 64, no. 1, pp. 124–131, 2008, doi: 10.1111/j.1541-0420.2007.00836.x.
S. Sutikno, S. Setiawan, and H. Purnomoadi, “Statistical downscaling output GCM modeling with continuum regression and pre-processing PCA approach,” IPTEK The Journal for Technology and Science, vol. 21, no. 3, 2010.
I. Ismah, E. Erfiani, A. H. Wigena, and B. Sartono, “Performance Analysis of Robust Functional Continuum Regression to Handle Outliers,” InPrime: Indonesian Journal of Pure and Applied Mathematics, vol. 6, no. 1, pp. 52–62, 2024.
S. K. Safi, M. Alsheryani, M. Alrashdi, R. Suleiman, D. Awwad, and Z. N. Abdalla, “Migration Letters Optimizing Linear Regression Models with Lasso and Ridge Regression: A Study on UAE Financial Behavior during COVID-19,” vol. 20, no. 6, pp. 139–153, 2023, [Online]. Available: www.migrationletters.com
W. K. Härdle and L. Simar, Applied multivariate statistical analysis. Springer Nature, 2019.
L. Li, “Sparse sufficient dimension reduction,” Biometrika, vol. 94, no. 3, pp. 603–613, 2007.
Z. Xie, X. Feng, X. Chen, and G. Huang, “Optimizing a vector of shrinkage factors for continuum regression,” Chemometrics and Intelligent Laboratory Systems, vol. 206, p. 104141, Nov. 2020, doi: 10.1016/J.CHEMOLAB.2020.104141.
S. Lee, M. H. Seo, and Y. Shin, “The lasso for high dimensional regression with a possible change point,” 2015. [Online]. Available: https://academic.oup.com/jrsssb/article/78/1/193/7040660
F. Emmert-Streib and M. Dehmer, “High-Dimensional LASSO-Based Computational Regression Models: Regularization, Shrinkage, and Selection,” Dec. 01, 2019, MDPI. doi: 10.3390/make1010021.
D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput Sci, vol. 7, p. e623, 2021.
DOI: http://dx.doi.org/10.12962/j27213862.v8i1.21658
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats