Modeling Youth Development Index in Indonesia Using Panel Data Regression for Binary Response with Random Effect

Pressylia Aluisina Putri Widyangga, Suliyanto Suliyanto, M. Fariz Fadillah Mardianto, Sediono Sediono

Abstract


Indonesia has the largest youth population in Southeast Asia, yet its Youth Development Index (YDI) ranks only fifth in the region. This study aims to fill the gap in empirical research by modeling the YDI in Indonesia using binary logit and binary probit regressions with random effects, based on panel data from 34 provinces during 2020–2022. The YDI categories are defined according to the national target of 57.67 set by the Ministry of Youth and Sports Affairs. The analysis reveals that the binary probit model performs better than the binary logit model, with a classification accuracy of 93.14% and a McFadden R-squared of 0.4064. Gender Inequality Index (GII) and Expected Years of Schooling (EYS) significantly affect the likelihood of achieving the YDI target. These results highlight the critical role of gender equality and education in advancing youth development in Indonesia. The binary probit model provides a practical tool for policymakers to predict and evaluate the effectiveness of development programs targeting youth outcomes. This research not only contributes methodologically to the study of youth development using advanced econometric models but also offers policy-relevant insights that support the strategic goals of Indonesia Emas 2045. By identifying key leverage points such as gender equity and education access, the findings reinforce the importance of inclusive and evidence-based planning to nurture a generation of resilient, empowered, and high-performing youth who can lead Indonesia toward a prosperous future.

Keywords


Youth Development Index; Panel Data Regression; Random Effect; Indonesia

Full Text:

PDF

References


A. Agresti, Statistical methods for the social sciences, 5th ed. Pearson, 2018.

A. Dewi Anggraeni Chairunnisa and A. Fauzan, “Implementation of Panel Data Regression in the Analysis of Factors Affecting Poverty Levels in Bengkulu Province in 2017-2020: Implementation of Panel Data Regression”, EKSAKTA: J. Sci. Data Anal., vol. 4, no. 1, pp. 40–45, Jan. 2023.

A. Efendi, "Studi Korelasi Indeks Pembangunan Pemuda (IPP) dengan Indeks Pembangunan Manusia (IPM) di Indonesia," Jurnal Paradigma, vol. 9, no. 1, 2020.

A. M. Rashed, M. A. Shalaby, and M. E. Khalil, "Youth Development Index: A holistic model of measuring youth development in Egypt," International Journal of Social Economics, vol. 48, no. 1, pp. 118-137, 2021. DOI: 10.1108/IJSE-07-2019-0428.

A. M. Yolanda, A. Adnan, and A. A. Dwiputri, "Pemodelan Klasifikasi Pada Indeks Ketimpangan Gender (GII) Tahun 2020 dengan Metode Naïve Bayes," Jurnal Keluarga Berencana, vol. 7, no. 1, pp. 22–31, 2022. [Online]. Available: https://doi.org/10.37306/kkb.v7i1.118. [Accessed: July. 7, 2024].

A. Stiglitz, "Panel data analysis: An application to the study of individual retirement decisions," Journal of Econometrics, vol. 223, no. 1, pp. 1-12, 2021. DOI: 10.1016/j.jeconom.2021.01.003.

B. Baltagi, Econometric Analysis of Panel Data. Springer, 2021.

Badan Pusat Statistik, Statistik Pemuda Indonesia 2023, vol. 21. Badan Pusat Statistik (BPS), 2023. [Online]. Available: https://www.bps.go.id/id/publication/2023/12/29/18781f394974f2cae5241318/statistik-pemuda-indonesia-2023.html. [Accessed: June. 23, 2024].

D. N. Gujarati and D. C. Porter, Basic econometrics. McGraw-Hill/Irwin, 2009.

I. A. Idrus, S. Anurlia, and D. Fadiyah, "Analysis of the impact of patriarchal culture on the role of women in politics and governance," JSIP: Jurnal Studi Ilmu Pemerintahan, vol. 4, no. 1, pp. 1–10, 2023.

J. C. Timoneda, "Estimating group fixed effects in panel data with a binary dependent variable: How the LPM outperforms logistic regression in rare events data," Social Science Research, vol. 93, p. 102486, Jan. 2021. DOI: 10.1016/j.ssresearch.2020.102486.

J. Johnston and J. E. Dinardo, Econometric methods. New York, Ny: Macgraw-Hill, 2009.

J. S. Butler and R. Moffitt, "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," The Econometric Society, vol. 50, no. 3, pp. 761–764, 1982.

Kemenpora, "Indeks Pembangunan Pemuda Naik Kemenpora: Modal Luar Biasa Untuk Optimalkan Bonus Demografi dengan Pemuda Unggul Menuju Indonesia Emas 2045," Kemenpora, 2023. [Online]. Available: https://www.kemenpora.go.id/detail/4183/indeks-pembangunan-pemuda-naik-kemenpora-modal-luar-biasa-untuk-optimalkan-bonus-demografi-dengan-pemuda-unggul-menuju-indonesia-emas-2045. [Accessed: June. 13, 2024].

L. de Castro Romero, V. Martín Barroso, and R. Santero-Sánchez, "Does gender equality in managerial positions improve the gender wage gap? Comparative evidence from Europe," Economies, vol. 11, no. 12, p. 301, 2023. DOI: 10.3390/economies11120301.

Larashati, "Ketimpangan Dan Peningkatan Kesetaraan Gender Dalam Sdgs (Sustainable Development Goals)," Jurnal Sains Edukatika Indonesia, vol. 4, no. 2, pp. 55–61, 2022.

M. Bertocchi, G. Brunetti, and C. Torricelli, "Marriage and divorce: The role of income," Review of Economics of the Household, vol. 19, pp. 321-347, 2021. DOI: 10.1007/s11150-019-09477-x.

N. Rahminawati, "Strategi Peningkatan Harapan Lama Sekolah (HLS) dan Rata-Rata Lama Sekolah (RLS)," TA'DIB: Jurnal Pendidikan Islam, vol. 12, no. 2, pp. 367–382, 2023. [Online]. Available: https://doi.org/10.29313/tjpi.v12i2.12852. [Accessed: Aug. 2, 2024].

S. Hupkau and B. Petrongolo, "Work, care and gender during the COVID-19 crisis," Fiscal Studies, vol. 41, no. 3, pp. 623-651, 2020. DOI: 10.1111/1475-5890.12245.

S. Akbari and J. Imani, "Application of Naive Bayes Classifier in Gender Classification of Speech Signals," IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 9, pp. 3879-3888, 2021. DOI: 10.1109/TNNLS.2020.3048946.

W. H. Greene, Econometric analysis, 5th ed., in Statistical Papers, vol. 4, pp. 983–984, 2023. [Online]. Available: https://doi.org/10.1007/s00362-010-0315-8. [Accessed: July. 3, 2024].




DOI: http://dx.doi.org/10.12962%2Fj27213862.v8i2.21734

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats