Comparison of GMERF and GLMM Tree Models on Poverty Household Data with Imbalanced Categories
Abstract
Keywords
Full Text:
PDFReferences
M. Fokkema, J. Edbrooke-Childs, and M. Wolpert, “Generalized linear mixed-model (GLMM) trees: A flexible decision-tree method for multilevel and longitudinal data,” Psychother. Res., vol. 31, no. 3, pp. 1–13, 2020, doi: 10.1080/10503307.2020.1785037.
M. R. Segal, “Machine Learning Benchmarks and Random Forest Regression,” Biostatistics, no. May, pp. 1–14, 2004, [Online]. Available: http://escholarship.org/uc/item/35x3v9t4.pdf
G. Verbeke, G., & Molenberghs, “Linear Mixed Models for Longitudinal Data,” Linear Mixed Models for Longitudinal Data. 2000. doi: 10.1007/b98969.
J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1, pp. 81–106, 1986, doi: 10.1007/bf00116251.
K. Topuz, A. Bajaj, and I. Abdulrashid, “Interpretable Machine Learning,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol. 2023-Janua, pp. 1236–1237, 2023, doi: 10.1201/9780367816377-16.
L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.
M. Pellagatti, C. Masci, F. Ieva, and A. M. Paganoni, “Generalized mixed-effects random forest: A flexible approach to predict university student dropout,” Stat. Anal. Data Min., vol. 14, no. 3, pp. 241–257, 2021, doi: 10.1002/sam.11505.
D. R. Cutler et al., “Random forests for classification in ecology,” Ecology, vol. 88, no. 11, pp. 2783–2792, 2007, doi: 10.1890/07-0539.1.
G. Biau and E. Scornet, “A random forest guided tour,” TEST, vol. 25, no. 2, pp. 197–227, 2016, doi: 10.1007/s11749-016-0481-7.
T. Hothorn, K. Hornik, and A. Zeileis, “Unbiased recursive partitioning: A conditional inference framework,” J. Comput. Graph. Stat., vol. 15, no. 3, pp. 651–674, 2006, doi: 10.1198/106186006X133933.
Y. Sun, A. K. C. Wong, and M. S. Kamel, “Classification of imbalanced data: A review,” Int. J. Pattern Recognit. Artif. Intell., vol. 23, no. 4, pp. 687–719, 2009, doi: 10.1142/S0218001409007326.
P. Kumar, R. Bhatnagar, K. Gaur, and A. Bhatnagar, “Classification of Imbalanced Data:Review of Methods and Applications,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1099, no. 1, p. 012077, 2021, doi: 10.1088/1757-899x/1099/1/012077.
H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, 2009, doi: 10.1109/TKDE.2008.239.
G. S. Datta and M. Ghosh, “Bayesian Prediction in Linear Models: Applications to Small Area Estimation,” Ann. Stat., vol. 19, pp. 1748–1770, 1991, doi: 10.1214/aos/1176348369.
McCulloch, Generalized, Linear, and Mixed Models. Canada: John Wiley & Sons, Inc., 2001.
M. Fokkema, N. Smits, A. Zeileis, T. Hothorn, and H. Kelderman, “Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees,” Behav. Res. Methods, vol. 50, no. 5, pp. 2016–2034, 2018, doi: 10.3758/s13428-017-0971-x.
A. Zeileis, T. Hothorn, K. Hornik, A. Zeileis, T. Hothorn, and K. Hornik, “Interface Foundation of America Model-Based Recursive Partitioning Linked references are available on JSTOR for this article : Model-Based Recursive Partitioning,” vol. 17, no. 2, pp. 492–514, 2016, doi: 10.1198/106186008X319331.
A. Hajjem, F. Bellavance, and D. Larocque, “Mixed-effects random forest for clustered data,” J. Stat. Comput. Simul., vol. 84, no. 6, pp. 1313–1328, 2012, doi: 10.1080/00949655.2012.741599.
P. and N. G. Mittal, “A comparative analysis of classification techniques on medical datasets,” IJRET Int. J. Res. Eng. Technol., vol. 3, no. 6, pp. 454–460, 2014, doi: 10.15623/ijret.2014.0306085.
T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 27, no. 8, pp. 861–874, 2006, doi: 10.1016/j.patrec.2005.10.010.
J. Han, J., Kamber, M., & Pei, Data Mining: Concepts and Techniques Third Edition. San Francisco: Elsevier / Morgan Kaufmann, 2011. doi: 10.1016/C2009-0-61819-5.
N. Lunardon, G. Menardi, and N. Torelli, “ROSE: A package for binary imbalanced learning,” R J., vol. 6, no. 1, pp. 79–89, 2014, doi: 10.32614/rj-2014-008.
N. V Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE : Synthetic Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002, doi: 10.1613/jair.953.
H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning,” in IEEE International Joint Conference on Neural Networks (IJCNN), Hong Kong, China: IEEE, 2008, pp. 1322–1328. doi: 10.1109/IJCNN.2008.4633969.
S. M. A. Elrahman and A. Abraham, “A Review of Class Imbalance Problem,” J. Netw. Innov. Comput., vol. 1, pp. 332–340, 2013, [Online]. Available: https://cspub-jnic.org/index.php/jnic/article/view/42/33
BPS, “Garis Kemiskinan dan Indikator Sosial Ekonomi Indonesia.” [Online]. Available: https://www.bps.go.id
Andrew Gelman and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge, UK: Cambridge University Press, 2007. doi: 10.1017/CBO9780511790942.
D. W. Hosmer, S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression: Third Edition, Third. Hoboken, New Jersey: John Wiley & Sons, 2013. doi: 10.1002/9781118548387.
J. Fox and G. Monette, “Generalized Collinearity Diagnostics,” J. Am. Stat. Assoc., vol. 87, no. 417, pp. 178–183, 2014, doi: 10.1080/01621459.1992.10475190.
D. Bates, M. Mächler, B. M. Bolker, and S. C. Walker, “Fitting Linear Mixed-Effects Models Using lme4,” J. Stat. Softw., vol. 67, no. 1, 2015, doi: 10.18637/jss.v067.i01.
A. Liaw and M. Wiener, “Classification and Regression by randomForest,” R News, vol. 2, no. December, pp. 18–22, 2002, [Online]. Available: https://journal.r-project.org/articles/RN-2002-022/
World Bank, “World Development Report 2018: Learning to Realize Education’s Promise.” The World Bank, Washington, DC, 2018. doi: 10.1596/978-1-4648-1096-1.
B. Krawczyk, “Learning from imbalanced data: open challenges and future directions,” Prog. Artif. Intell., vol. 5, no. 4, pp. 221–232, 2016, doi: 10.1007/s13748-016-0094-0.
M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class imbalance problem in convolutional neural networks,” Neural Networks, vol. 106, pp. 249–259, 2018, doi: 10.1016/j.neunet.2018.07.011.
A. Niculescu-Mizil and R. Caruana, “Predicting good probabilities with supervised learning,” ICML 2005 - Proc. 22nd Int. Conf. Mach. Learn., no. 1999, pp. 625–632, 2005, doi: 10.1145/1102351.1102430.
DOI: http://dx.doi.org/10.12962%2Fj27213862.v8i2.21901
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats