Forecasting Futures Gold Prices Using Pulse Function Intervention Analysis Approach

Ariadna Sopia Miranda, Putu Eka Andriani, Sediono Sediono, Idrus Syahzaqi

Abstract


Gold is a precious metal that plays an important role in global trade and is often use as a financial standard in various countries. In 2024, gold prices surged sharply due to global macroeconomic factors, such as economic uncertainty, positioning gold as a safe haven for investors. Accurate predictions of future gold prices are crucial for helping investors make informed decisions and adapt to market changes. In line with Sustainable Development Goal (SDG) 8 on Decent Work and Economic Growth, this study uses the pulse function intervention analysis approach to predict gold prices by identifying patterns of changes in the pre-intervention and post-intervention periods. This study aims to make a significant contribution to the use of comprehensive and relevant predictive tools by considering the effects of interventions, supporting investor decision-making, and contributing to economic growth. The best model was obtained at ARIMA (0,2,1) with intervention parameters b=0, r=2, and s=0. The prediction results show a close alignment with actual data, yielding a MAPE value of 1.289%. Additionally, this model produces the smallest AIC value of 1125.1, an SBC value of 1135.86, and an MSE value of 1403.11, demonstrating excellent predictive capability.

Keywords


Futures Gold Price; ARIMA; Pulse Function; Intervention Analysis

Full Text:

PDF

References


E. A. Florentina, J. Gunawan, and N. S. Hakim, “Analisis Daya Saing Produk Emas Indonesia di Pasar Global,” Jurnal Sains dan Seni ITS, vol. 11, no. 5, pp. I47–I52, 2023.

M. B. Triki and A. Ben Maatoug, “The GOLD market as a safe haven against the stock market uncertainty: Evidence from geopolitical risk,” Resources Policy, vol. 70, p. 101872, 2021.

I. F. Puspitasari, N. Andriyani, and N. Hidayah, “Emas sebagai safe haven dan inflation hedging di tengah ketidakpastian perekonomian global selama pandemi Covid-19,” JURNAL PENDIDIKAN EKONOMI: Jurnal Ilmiah Ilmu Pendidikan, Ilmu Ekonomi Dan Ilmu Sosial, vol. 16, no. 2, pp. 250–258, 2022.

T. C. Chiang, “The effects of economic uncertainty, geopolitical risk and pandemic upheaval on gold prices,” Resources Policy, vol. 76, p. 102546, 2022, doi: https://doi.org/10.1016/j.resourpol.2021.102546.

S. Baker, N. Bloom, S. Davis, and S. Terry, “COVID-induced economic uncertainty and its consequences,” VoxEU. org, vol. 13, 2020.

John Baffes, Jeetendra Khadan, and Kaltrina Temaj, “Gold Shines Amid Geopolitical Uncertainties ,” World Bank . Accessed: Nov. 04, 2024. [Online]. Available: https://blogs.worldbank.org/en/opendata/gold-shines-amid-geopolitical-uncertainties

M. K. Alam, M. I. Tabash, M. Billah, S. Kumar, and S. Anagreh, “The impacts of the Russia–Ukraine invasion on global markets and commodities: a dynamic connectedness among G7 and BRIC markets,” Journal of Risk and Financial Management, vol. 15, no. 8, p. 352, 2022.

C. Andreas, I. A. Rahmayanti, and S. M. Ulyah, “The impact of US-China trade war in forecasting the gold price using ARIMAX model,” in AIP Conference Proceedings, AIP Publishing, 2021.

A. F. Yuliana and R. Robiyanto, “Peran Emas Sebagai Safe Haven Bagi Saham Pertambangan Di Indonesia Pada Periode Pandemi Covid-19,” Jurnal Ilmiah Bisnis dan Ekonomi Asia, vol. 15, no. 1, pp. 1–11, 2021.

World Gold Council, “2024 Central Bank Gold Reserves Survey.” [Online]. Available: https://www.gold.org/goldhub/data/2024-central-bank-gold-reserves-survey

N. Aliffia, S. Sediono, S. Suliyanto, M. F. F. Mardianto, and D. Amelia, “MODELING OF WORLD CRUDE OIL PRICE BASED ON PULSE FUNCTION INTERVENTION ANALYSIS APPROACH,” MEDIA STATISTIKA, vol. 16, no. 2, pp. 136–147, Feb. 2024, doi: 10.14710/medstat.16.2.136-147.

R. Elizabeth and S. Sitorus, “Gold Price Forecasting Using Autoregressive Integrated Moving Average (ARIMA) Method,” Journal of Mathematics Technology and Education, vol. 1, no. 1, pp. 11–18, 2021.

M. B. Triki and A. Ben Maatoug, “The GOLD market as a safe haven against the stock market uncertainty: Evidence from geopolitical risk,” Resources Policy, vol. 70, p. 101872, 2021.

D. Nudia, “Emas Sebagai Instrumen Investasi Jangka Panjang,” Shar-E: Jurnal Kajian Ekonomi Hukum Syariah, vol. 8, no. 1, pp. 177–187, 2022.

I. Kurniawan, “Analisis keuntungan investasi emas dengan IHSG,” Jurnal manajemen bisnis dan kewirausahaan, vol. 3, no. 2, 2019.

G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis: forecasting and control. John Wiley & Sons, 2015.

W. W. S. Wei, “Time series analysis: univariate and multivariate,” Methods. Boston, MA: Pearson Addison Wesley, 2006.

D. C. Montgomery, C. L. Jennings, and M. Kulahci, “Introduction to Time Series Analysis and Forecasting (Wiley Series in Probability and Statistics).”

H. N. Tantika, N. Supriadi, and D. Anggraini, “Metode seasonal ARIMA untuk meramalkan produksi kopi dengan indikator curah hujan menggunakan aplikasi R di kabupaten Lampung Barat,” Matematika: Jurnal Teori dan Terapan Matematika, vol. 17, no. 2, 2018.

T. Trimono, A. Sonhaji, and U. Mukhaiyar, “Forecasting Farmer Exchange Rate in Central Java Province Using Vector Integrated Moving Average,” Media Statistika, vol. 13, no. 2, pp. 182–193, 2020.

Investing, “Emas Berjangka GCZ4.” Accessed: Oct. 05, 2024. [Online]. Available: https://id.investing.com/commodities/gold-historical-data

 




DOI: http://dx.doi.org/10.12962/j27213862.v8i1.21979

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats