Spatio-Temporal Kriging for Monthly Precipitation Interpolation in East Kalimantan

Friendtika Miftaqul Jannah, Rahma Fitriani, Henny Pramoedyo

Abstract


Precipitation is one of the factors that can lead to various disasters, such as droughts and floods. Ordinary interpolation methods, such as spatial kriging, cannot accommodate the time element, which is crucial for addressing precipitation-related disasters. Therefore, this study applies a spatio-temporal kriging, which incorporates both spatial and temporal elements. The aim of this study is to develop a spatio-temporal kriging model for precipitation, serving as a basis for interpolating precipitation at unobserved points over various time intervals within the study domain. This model is expected to be an effective tool for disaster mitigation and water conservation strategies. The data used in this study comprises total monthly precipitation recorded at seven precipitation observation posts in East Kalimantan from 2021 to 2023. The findings indicate that the spatio-temporal ordinary kriging model is the most suitable approach, with the best semivariogram model identified as the simple sum-metric. The spatial semivariogram follows an exponential model, while the temporal and joint semivariograms follow Gaussian models. The accuracy of the chosen model yields an RMSE of 2493.687. The interpolation results reveal that West Kutai falls within the medium to high precipitation category, making it the district with the highest flood risk.


Keywords


Interpolation; Precipitation; Spatio-Temporal

Full Text:

PDF

References


Z. Zhu, D. B. Wright, and G. Yu, “The Impact of Rainfall Space-Time Structure in Flood Frequency Analysis,” Water Resour Res, vol. 54, no. 11, pp. 8983–8998, Nov. 2018, doi: 10.1029/2018WR023550.

T. W. Sudinda, “Pemanfaatan Air Hujan untuk Memenuhi Kebutuhan Air Baku Jangka Panjang Ibu Kota Negara,” Construction Engineering and Sustainable Development, vol. 3, no. 1, pp. 1–48, Jun. 2020, Accessed: Mar. 09, 2025. [Online]. Available: https://www.e-journal.trisakti.ac.id/index.php/sipil/article/view/13654

R. Olanrewaju, B. Ekiotuasinghan, and G. Akpan, “Analysis of rain fall pattern and flood incidences in Warri metropolis, Nigeria,” Geography, Environment, Sustainability, vol. 10, no. 4, pp. 83–97, 2017, doi: 10.24057/2071-9388-2017-10-4-83-97.

Y. Chen, A. Paschalis, L. P. Wang, and C. Onof, “Can we estimate flood frequency with point-process spatial-temporal rainfall models?,” J Hydrol (Amst), vol. 600, Sep. 2021, doi: 10.1016/j.jhydrol.2021.126667.

P. Liu and Y. K. Tung, “Spatial interpolation of rain-field dynamic time-space evolution based on radar rainfall data,” Hydrology Research, vol. 51, no. 3, pp. 521–540, Jun. 2020, doi: 10.2166/nh.2020.115.

A. Verdin, C. Funk, B. Rajagopalan, and W. Kleiber, “Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 5, pp. 2552–2562, May 2016, doi: 10.1109/TGRS.2015.2502956.

A. S. Abdullah et al., “Implementation of Generalized Space Time Autoregressive (GSTAR)-Kriging model for predicting rainfall data at unobserved locations in West Java,” Applied Mathematics and Information Sciences, vol. 12, no. 3, pp. 607–615, May 2018, doi: 10.18576/amis/120316.

E. A. Varouchakis, D. T. Hristopulos, G. P. Karatzas, G. A. C. Perez, and V. Diaz, “Spatiotemporal geostatistical analysis of precipitation combining ground and satellite observations,” Hydrology Research, vol. 52, no. 3, pp. 804–820, Jun. 2021, doi: 10.2166/nh.2021.160.

N. B. Raja, O. Aydin, N. Türkoğlu, and I. Çiçek, “Space-time kriging of precipitation variability in Turkey for the period 1976–2010,” Theor Appl Climatol, vol. 129, no. 1–2, pp. 293–304, Jul. 2017, doi: 10.1007/s00704-016-1788-8.

J. R. P. De Carvalho, A. M. Nakai, and J. E. B. A. Monteiro, “Modelagem espaço temporal para imputação de dados para séries de precipitação diária em zonas homogêneas,” Revista Brasileira de Meteorologia, vol. 31, no. 2, pp. 196–201, Apr. 2016, doi: 10.1590/0102-778631220150025.

J.-M. Montero, G. Fernández-Avilés, and J. Mateu, Spatial and Spatio-Temporal Geostatistical Modeling and Kriging, 1st ed. United Kingdom: John Wiley & Sons, Ltd, 2015. doi: 10.1002/9781118762387.

L. Shand and B. Li, “Modeling nonstationarity in space and time,” Biometrics, vol. 73, no. 3, pp. 759–768, Sep. 2017, doi: 10.1111/biom.12656.

N. N. Rohma, H. Pramoedyo, and S. Astutik, “Perbandingan Pendugaan Metode Ordinary Kriging dan Metode Ordinary Kriging dengan Teknik Jackknife,” MAp (Mathematics and Applications) Journal, vol. 2, no. 4, pp. 101–111, 2023, doi: https://doi.org/10.15548/map.v4i2.4736.

J. D. Cryer and K.-S. Chan, Time Series Analysis with Applications in R, 2nd ed. Iowa: Springer, 2008. doi: https://doi.org/10.1007/978-0-387-75959-3.

V. Murthy and A. Okunade, “Is the health care price inflation in US urban areas stationary?: Evidence from panel unit root tests,” Journal of Economics, Finance and Administrative Science, vol. 23, no. 44, pp. 77–94, Jun. 2018, doi: 10.1108/JEFAS-02-2017-0043.

K. S. Im, M. H. Pesaran, and Y. Shin, “Testing for unit roots in heterogeneous panels,” J Econom, vol. 115, no. 1, pp. 53–74, Jul. 2003, doi: 10.1016/S0304-4076(03)00092-7.

X. Yang, Y. Yang, K. Li, and R. Wu, “Estimation and characterization of annual precipitation based on spatiotemporal kriging in the Huanghuaihai basin of China during 1956–2016,” Stochastic Environmental Research and Risk Assessment, vol. 34, no. 9, pp. 1407–1420, Sep. 2020, doi: 10.1007/s00477-019-01757-0.

N. Islam, A. Kashem, P. Das, M. N. Ali, and S. Paul, “Prediction of high-performance concrete compressive strength using deep learning techniques,” Asian Journal of Civil Engineering, vol. 25, no. 1, pp. 327–341, Jan. 2024, doi: 10.1007/s42107-023-00778-z.

BMKG, “Pandangan Iklim 2025,” Jakarta, Oct. 2024.

O. M. Katipoğlu, “Spatial analysis of seasonal precipitation using various interpolation methods in the Euphrates basin, Turkey,” Acta Geophysica, vol. 70, no. 2, pp. 859–878, Apr. 2022, doi: 10.1007/s11600-022-00756-0.

W. Zhang, D. Liu, S. Zheng, S. Liu, H. A. Loáiciga, and W. Li, “Regional precipitation model based on geographically and temporally weighted regression kriging,” Remote Sens (Basel), vol. 12, no. 16, pp. 1–19, Aug. 2020, doi: 10.3390/RS12162547.

B. O. Ayugi, W. Yan, W. Shanghai, J. Tong, W. Wen, and D. Chepkemoi, “Analysis of Spatial and Temporal Patterns of Rainfall Variations over Kenya,” Journal of Environment and Earth Science, vol. 6, no. 11, pp. 69–83, 2016, [Online]. Available: www.iiste.org

M. A. Pertiwi, S. Kahar, B. Sasmito, and S. Marpaung, “Analisis Korelasi Suhu Permukaan Laut Terhadap Curah Hujan dengan Metode Penginderaan Jauh Tahun 2012-2013 (Studi Kasus : Kota Semarang),” Jurnal Geodesi Undip Januari, vol. 4, no. 1, pp. 61–71, 2015, doi: https://doi.org/10.14710/jgundip.2015.7639.

I. B. A. P. Adiguna, I. W. Nuarsa, and N. L. P. R. Puspitha, “Pengaruh Suhu Permukaan Laut terhadap Curah Hujan di Pulau Bali Tahun 2009-2018,” Journal of Marine and Aquatic Sciences, vol. 7, no. 2, p. 214, Dec. 2021, doi: 10.24843/jmas.2021.v07.i02.p10.

M. F. Islami, N. F. T, N. Falah, F. Khairunnisa, and N. A. Jamal, “Analisis Karakteristik Perbandingan Curah Hujan Wilayah Pesisir dan Wilayah Perbukitan Kota Makassar,” LaGeografia, vol. 22, no. 2, p. 196, Feb. 2024, doi: 10.35580/lageografia.v22i2.59403.

R. Tresnawati and Rosyidah, “Validation of Monthly Rainfall Prediction Taken from the Output of Canonical Correlation Analysis using Area Topographical Scenarios in Centra Java Province,” Jurnal Meteorologi dan Geofisika, vol. 20, no. 1, pp. 1–12, May 2019, [Online]. Available: http://www.cpc.ncep.noaa.gov/




DOI: http://dx.doi.org/10.12962%2Fj27213862.v8i2.22195

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats