Estimating Confidence Intervals for Hazard Ratio with Composite Covariates in the Cox Models
Abstract
Keywords
Full Text:
PDFReferences
D. R. Cox, “Regression Models and Life-Tables,” Journal of the Royal Statistical Society, vol. 34, no. 2, pp. 187–220, 1972.
D. G. Kleinbaum and M. Klein, Statistics for Biology and Health Series Editors, 3rd ed. Springer, 2012. [Online]. Available: http://www.springer.com/series/2848
T. Emura, Y.-H. Chen, and H.-Y. Chen, “Survival Prediction Based on Compound Covariate under Cox Proportional Hazard Models,” PLoS One, vol. 7, no. 10, 2012, doi: 10.1371/journal.pone.0047627.
E. Bair, T. Hastie, D. Paul, and R. Tibshirani, “Prediction by supervised principal components,” J Am Stat Assoc, vol. 101, no. 473, pp. 119–137, Mar. 2006, doi: 10.1198/016214505000000628.
E. W. Steyerberg and Y. Vergouwe, “Towards better clinical prediction models: seven steps for development and an ABCD for validation,” Eur Heart J, vol. 35, no. 29, pp. 1925–1931, Aug. 2014, doi: 10.1093/EURHEARTJ/EHU207.
T. J. Van Der Weele and M. J. Knol, “A tutorial on interaction,” Epidemiol Methods, vol. 3, no. 1, pp. 33–72, Dec. 2014, doi: 10.1515/em-2013-0005.
D. Collett, Modelling Survival Data in Medical Research. Oxon: CRC Press, 2023. [Online]. Available: https://www.routledge.com/
David. Hosmer, Susanne. May, and Stanley. Lemeshow, Applied Survival Analysis : Regression Modeling of Time to Event Data, 2nd Edition. Wiley-Interscience, 2008.
J. D. Kalbfleisch and R. L. Prentice, The Statistical Analysis of Failure Time Data. New Jersey: Wiley, 2002.
T. M. Therneau and P. M. Grambsch, Modeling Survival Data: Extending the Cox Model. New York: Springer, 2000.
D. M. Witten and R. Tibshirani, “Survival analysis with high-dimensional covariates”, doi: 10.1177/0962280209105024.
M. E. Charlson, P. Pompei, K. L. Ales, and C. R. MacKenzie, “A new method of classifying prognostic comorbidity in longitudinal studies: development and validation,” J Chronic Dis, vol. 40, no. 5, pp. 373–383, 1987, doi: 10.1016/0021-9681(87)90171-8.
C. F. Dormann et al., “Collinearity: a review of methods to deal with it and a simulation study evaluating their performance,” Ecography, vol. 36, no. 1, pp. 27–46, 2013, doi: 10.1111/J.1600-0587.2012.07348.X.
W. Pan and M. M. Wall, “Small-sample adjustments in using the sandwich variance estimator in generalized estimating equations,” Stat Med, vol. 21, no. 10, pp. 1429–1441, May 2002, doi: 10.1002/sim.1142.
J. Meis, M. Pilz, B. Bokelmann, C. Herrmann, G. Rauch, and M. Kieser, “Point estimation, confidence intervals, and P-values for optimal adaptive two-stage designs with normal endpoints,” Stat Med, vol. 43, no. 8, pp. 1577–1603, Apr. 2024, doi: 10.1002/sim.10020.
M. Hollander, I. W. McKeague, and J. Yang, “Likelihood Ratio-Based Confidence Bands for Survival Functions,” J Am Stat Assoc, vol. 92, no. 437, p. 215, Mar. 1997, doi: 10.2307/2291466.
DOI: http://dx.doi.org/10.12962%2Fj27213862.v8i2.22710
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats